【题目】如图,是以为直径的上的一点,于点,过点作的切线,与的延长线相交于点,点是的中点,连结交于点
(1)求证:是的切线;
(2)求证:;
(3)若,且的半径长为,求.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
(1)要证AF是⊙O的切线,就是要证明∠FAO=90°,连接AB,根据BE是⊙O的切线和直角三角形的等量代换,就可得出结论;
(2)根据切线判定知道EB⊥BC,而AD⊥BC,从而可以确定AD∥BE,那么△BFC∽△DGC,又点F是EB的中点,就可得出结论;
(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性和勾股定理,可以求出BD的长度.
(1)证明:连结,
∵是的直径,
∴.
∵是斜边的中点,
∴,
∴,
又∵,
∴
∵是的切线,
∴
∵
∴是的切线;
(2)证明:∵是的直径,是的切线,
∴.
又∵,
∴,
∴,,
∴,,
∴,
∵是斜边的中点,
∴,
∴;
(3)解:过点作于点,
∵,,
∴.
由(2),知,
∴.
由已知,有,
∴,即是等腰三角形.
∵,
∴,
∵,
∴,
即,
∵,,,
∴四边形是矩形,,
∵,易证,
∴,
即.
∵的半径长为,
∴.
∴,
解得.
∴.
科目:初中数学 来源: 题型:
【题目】一次函数y1=kx+b与y2=x+a的图象如图,则下列结论中①k<0;②a>0;③当x<3时,y1>y2;④方程组的解是.正确的结论是_____(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点 A(﹣2,0),B(2,0),C(0,2),点 D,点E分别是 AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接 AD′,BE′.
(1)如图①,若 0°<α<90°,当 AD′∥CE′时,求α的大小;
(2)如图②,若 90°<α<180°,当点 D′落在线段 BE′上时,求 sin∠CBE′的值;
(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,三角形内接于,为直径,过点作直线,要使得是的切线,还需添加的条件是(只需写出三种):①________或②________或③________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E,BC= ,CD= ,则sin∠AEB的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强学生体质,丰富学生的学习生活,某校设置室外活动课,并决定购买一些排球和跳绳.已知一个排球的费用比3根跳绳的费用少10元,2个排球与5根跳绳的总费用为200元.
(1)求每个排球和每根跳绳的价格分别为多少元;
(2)该校现计划购买排球和跳绳110件,排球的数量不少于跳绳数量的,且用于购买排球和跳绳的总费用不超过3760元.请你通过计算求出该校有哪几种购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知,这时我们把关于 x 的形如二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”,必有实数根;
(3)若 x 1是“勾系一元二次方程” 的一个根,且四边形 ACDE 的周长是6,求ABC 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:
(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
y | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 4.5 | 4.1 | 4 | 4.5 | 5.0 |
要求:补全表格中相关数值(保留一位小数);
(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com