分析 (1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;
(2)对边平行且相等的四边形是平行四边形即可判定四边形ABCD的形状,根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.
解答 解:(1)①如图,线段AB即为所求线段,点B的坐标为(-3,0),
故答案为:(-3,0);
②如图,线段CD即为所求线段;
(2)由(1)知四边形ABCD是平行四边形,
∵直线y=kx平分(1)中四边形ABCD的面积,
则直线y=kx必过对角线的交点E,
∵点E坐标为为($\frac{3}{2}$,2),
∴k=$\frac{2}{\frac{3}{2}}$=$\frac{4}{3}$,
故答案为:$\frac{4}{3}$.
点评 本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com