精英家教网 > 初中数学 > 题目详情
(2006•济宁)反比例函数y=与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图象大致为( )
A.
B.
C.
D.
【答案】分析:此题应先根据正比例函数求出交点坐标为(1,2),再代入反比例函数解析式得,y=
解答:解:∵正比例函数y=2x的图象过一、三象限,
∴两函数的交点必在一、三象限,可排除A、C.
又∵两函数图象一个交点的横坐标为1,代入正比例函数y=2x得y=2×1=2,
∴反比例函数y=的解析式为y=,即xy=2.
由B、D两选项可知,当x=1时,B的取值大致为2.
故选B.
点评:本题主要考查了反比例函数的图象性质和正比例函数的图象性质,从交点坐标入手是解决此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:选择题

(2006•济宁)反比例函数y=与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图象大致为( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2010年贵州省六盘水市盘县响水中学中考数学模拟密卷(二)(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山东省济宁市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山东省济宁市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2006•济宁)反比例函数y=与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图象大致为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案