精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.

(1)如图,点D在线段CB上,四边形ACDE是正方形.

①若点GDE中点,求FG的长.

②若DG=GF,求BC的长.

(2)已知BC=9,是否存在点D,使得DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

【答案】(1)FG =2BC=12;(2)等腰三角形DFG的腰长为420

【解析】(1)①只要证明△ACF∽△GEF,推出,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;

(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,

③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;

(1)①在正方形ACDE中,DG=GE=6,

中Rt△AEG中,AG=

∵EG∥AC,

∴△ACF∽△GEF,

∴FG=AG=2

②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,

∵EF=EF,

∴△AEF≌△DEF,

∴∠1=∠2,设∠1=∠2=x,

∵AE∥BC,

∴∠B=∠1=x,

∵GF=GD,

∴∠3=∠2=x,

在△DBF中,∠3+∠FDB+∠B=180°,

∴x+(x+90°)+x=180°,

解得x=30°,

∴∠B=30°,

∴在Rt△ABC中,BC=

(2)在Rt△ABC中,AB==15,

如图2中,当点D中线段BC上时,此时只有GF=GD,

∵DG∥AC,

∴△BDG∽△BCA,

设BD=3x,则DG=4x,BG=5x,

∴GF=GD=4x,则AF=15-9x,

∵AE∥CB,

∴△AEF∽△BCF,

整理得:x2-6x+5=0,

解得x=1或5(舍弃)

∴腰长GD为=4x=4.

如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,

设AE=3x,则EG=4x,AG=5x,

∴FG=DG=12+4x,

∵AE∥BC,

∴△AEF∽△BCF,

解得x=2或-2(舍弃),

∴腰长DG=4x+12=20.

如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.

设AE=3x,则EG=4x,AG=5x,DG=4x+12,

∴FH=GH=DGcos∠DGB=(4x+12)×=

∴GF=2GH=

∴AF=GF-AG=

∵AC∥DG,

∴△ACF∽△GEF,

解得x=或-(舍弃),

∴腰长GD=4x+12=

如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.

设AE=3x,则EG=4x,AG=5x,DG=4x-12,

∴FH=GH=DGcos∠DGB=

∴FG=2FH=

∴AF=AG-FG=

∵AC∥EG,

∴△ACF∽△GEF,

解得x=或-(舍弃),

∴腰长DG=4x-12=

综上所述,等腰三角形△DFG的腰长为4或20或

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在处接到报告:有受灾群众被困于一座遭水淹的楼顶处,情况危急!救援队伍在处测得的北偏东的方向上(如图所示),队伍决定分成两组:第一组马上下水游向处救人,同时第二组从陆地往正东方向奔跑米到达处,再从处下水游向处救人,已知的北偏东的方向上,且救援人员在水中游进的速度均为米/秒.在陆地上奔跑的速度为米/秒,试问哪组救援队先到处?请说明理由.(参考数据

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则yx之间的函数关系式是( )

A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)

C. y=2x-24(0<x<12) D. y=x-12(0<x<24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,DAB边上一点.

1)求证:△ACE≌△BCD

2)求证:2CD2=AD2+DB2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

A. ①③ B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设PCD的面积为S,则用m表示S正确的是(  )

A. (m2﹣4) B. m2﹣2 C. (4﹣m2 D. 2﹣m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=x2+bx+cy轴的交于点A(0,3),与x轴的交于点BC,点B的横坐标为2.点A关于抛物线对称轴对称的点为点D,在x轴上有一动点E(t,0),过点E作平行于y轴的直线与抛物线、直线AD的交点分别为P、Q.

(1)求抛物线的解析式;

(2)当点P在线段AC的下方时,求△APC面积的最大值;

(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似.若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=GCE

(1)求证:直线CG为⊙O的切线;

(2)若点H为线段OB上一点,连接CH,满足CB=CH,

①△CBH∽△OBC

②求OH+HC的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ΔABC中,AB=AC,若将ΔABC绕点C顺时针180得到ΔFEC。

(1)试猜想AE与BF有何关系,并说明理由;

(2)若ΔABC的面积为3cm2,求四边形ABFE的面积;

(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由。

查看答案和解析>>

同步练习册答案