精英家教网 > 初中数学 > 题目详情

【题目】(问题情境)

我们知道若一个矩形是的周长固定,当相邻两边相等,即为正方形时,它的面积最大.反过来,若一个矩形的面积固定,它的周长是否会有最值呢?

(探究方法)

用两个直角边分别为的4个全等的直角三角形可以拼成一个正方形。若,可以拼成如图所示的正方形,从而得到,即;当时,中间小正方形收缩为1个点,此时正方形的面积等于4个直角三角形面积的和.即.于是我们可以得到结论:为正数,总有,当且仅当时,代数式取得最小值.另外,我们也可以通过代数式运算得到类似上面的结论:

,∴

∴对于任意实数总有,且当时,代数式取最小值

使得上面的方法,对于正数,试比较的大小关系.

(类比应用)

利用上面所得到的结论完成填空

(1)当时,代数式有最 值为

(2)当时,代数式有最 值为

(3)如图,已知是反比例函数图象上任意一动点,,试求的最小面积.

【答案】(1)小;4 (2)小; (3)1

【解析】

探究方法:仿照给定的方法,即可得出这一结论;

1)直接利用求解;

2)变形解答即可;

3)设,写出面积表达式,利用上面的结论做答即可.

解:探究:∵

成立;

1)由可以得到:

∴当时,代数式有最小值为4.

2)构造已知条件形式:

时,代数式有最小值为

3)过PPBx轴于点B,过AACx轴于点C,设,由题意得:

=

=

=

=

的最小面积为1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据: ≈1.414, ≈1.132)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RtABC中,∠A=90°,AB=AC=+2,D是边AC上的动点,BD的垂直平分线交BC于点E,连接DE,若CDE为直角三角形,则BE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县政府计划拨款34000元为福利院购买彩电和冰箱,已知商场彩电标价为2000/台,冰箱标价为1800/台,如按标价购买两种家电,恰好将拨款全部用完.

1)问原计划购买的彩电和冰箱各多少台?

2)购买的时候恰逢商场正在进行促销活动,全场家电均降价进行销售,若在不增加县政府实际负担的情况下,能否比原计划多购买3台冰箱?请通过计算回答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点轴非负半轴上的动点,点坐标为是线段的中点,将点绕点顺时针方向旋转90°得到点,过点轴的垂线,垂足为,过点轴的垂线与直线相交于点,连接,设点的横坐标为

1)当时,求点的坐标;

2)设的面积为,当点在线段上时,求之间的函数关系式,并写出自变量的取值范围;

3)当为何值时,取得最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x22x+3x轴于点AC(点A在点C左侧),交y轴于点B

(1)求ABC三点坐标;

(2)如图1,点DAC中点,点E在线段BD上,且BE=2DE,连接CE并延长交抛物线于点M,求点M坐标;

(3)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG内一点,连接PAPCPG,分别以APAG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC

(1)求点A、C的坐标;

(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角标系中,已知ABC三个顶点的坐标分别为A(1,2)B(3,4)C(1,6)

1)画出△ABC,并求出BC所在直线的解析式;

2)画出△ABC绕点A顺时针旋转90°后得到的△AB1C1,并求出△ABC在上述旋转过程中扫过的面积.

查看答案和解析>>

同步练习册答案