精英家教网 > 初中数学 > 题目详情

如图,已知在直角梯形OABC中,CB∥x轴,点C落在y轴上,点A(3,0)、点B(2,2),将AB绕点B逆时针旋转90°,点A落在双曲线y=数学公式的图象上点A1,则k的值为


  1. A.
    10
  2. B.
    4
  3. C.
    12
  4. D.
    9
C
分析:作BD⊥x轴于点D,利用旋转不变性求得A1E=AD=1,BE=BD=2,从而求得点A1的坐标,用待定系数法求得A1的坐标即可.
解答:解:如图,作BD⊥x轴于点D,
∵将AB绕点B逆时针旋转90°,点A落在双曲线y=的图象上点A1
∴A1E⊥BE,
∵点A(3,0)、点B(2,2),
∴BD=2,AD=1
∴A1E=AD=1,BE=BD=2,
∴点A1的坐标为(4,3),
∴k=3×4=12.
故选C.
点评:本题考查了反比例函数的综合知识,解题的关键是利用旋转不变性求得点A1的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分线EF交AD于G,交BA的延长线于F,且∠D=45°,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
5
,tanA=
5
,P、Q分别是边AB、CD上的动点(点P不与点A、点B重合),且有BP=2CQ.
(1)求AB的长;
(2)设CQ=x,四边形PADQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)以C为圆心、CQ为半径作⊙C,以P为圆心、以PA的长为半径作⊙P.当四边形PADQ是平行四边形时,试判断⊙C与⊙P的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一点P,使△ABP∽△DCP,求出BP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是点
(18,6)
(18,6)

查看答案和解析>>

同步练习册答案