精英家教网 > 初中数学 > 题目详情
如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.
解:∵直线与x轴交于点A的坐标为(﹣1,0),∴OA=1。
又∵OC=2OA,∴OC=2。∴点B的横坐标为2,代入直线,得y=。∴B(2,)。
∵点B在双曲线上,∴k=xy=2×=3。
∴双曲线的解析式为

试题分析:根据一次函数与双曲线图象的交点和OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点C(),且与反比例 函数在第一象限内的图象交于点B,且BD⊥轴于点D,OD

(1)求直线AB的函数解析式;
(2)设点P是轴上的点,若△PBC的面积等于,直接写出点P的坐标. 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,一次函数(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2).

(1)求m的值;
(2)求正比例函数y=kx的解析式;
(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与双曲线交于C、D两点,与x轴交于点A.

(1)求n的取值范围和点A的坐标;
(2)过点C作CB⊥y轴,垂足为B,若S ABC=4,求双曲线的解析式;
(3)在(1)、(2)的条件下,若AB=,求点C和点D的坐标并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与原点O关于直线l对称.反比例函数的图象经过点C,点P在反比例函数图象上且位于C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点.

(1)求反比例函数的解析式;
(2)求AN•BM的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列函数中,属于反比例函数的是(  )
A.B.C.y=5﹣2xD.y=x2+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是(  )
A.当x=3时,EC<EMB.当y=9时,EC>EM
C.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数y1=x和的图象如图所示,则y1>y2的x取值范围是
A.x<﹣1或x>1B.x<﹣1或0<x<1
C.﹣1<x<0或x>1D.﹣1<x<0或0<x<1

查看答案和解析>>

同步练习册答案