精英家教网 > 初中数学 > 题目详情

已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.

(1)求证:四边形ABED为矩形;

(2)若AB=4, ,求CF的长.

 

【答案】

(1)证明见解析(2)2

【解析】(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD。

∵AD∥BC,DE⊥BC,∴DE⊥AD。

∴∠DAB=∠ADE=∠DEB=90°。

∴四边形ABED为矩形。

(2)解:∵四边形ABED为矩形,∴DE=AB=4。

∵DC=DA,∴点C在⊙D上。

∵D为圆心,DE⊥BC,∴CF=2EC。

,设AD=3k(k>0)则BC=4k。∴BE=3k,EC=BC-BE=4k-3k=k,DC=AD=3k。

由勾股定理得DE2+EC2=DC2,即42+k2=(3k)2,∴k2=2。

∵k>0,∴k=。∴CF=2EC=2

(1)根据AD∥BC和AB切圆D于A,求出DAB=∠ADE=∠DEB=90°,即可推出结论。

(2)根据矩形的性质求出AD=BE=AB=DE=4,根据垂径定理求出CF=2CE,设AD=3k,则BC=4k,BE=3k,EC=k,DC=AD=3k,在△DEC中由勾股定理得出一个关于k的方程,求出k的值,即可求出答案

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
12
BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的长;
        (2)梯形ABCD的面积.

查看答案和解析>>

同步练习册答案