精英家教网 > 初中数学 > 题目详情

已知, 点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.

(1)利用图1,求证:PA=PB;

(2)如图2,若点的交点,当时,求PB与PC的比值;

(3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,请借助图3补全图形,并求的长.

(1)(2)

(3)

 

解:(1)在OB上截取OD=OA,连接PD,

∵OP平分∠MON,

∴∠MOP=∠NOP.

又∵OA=OD,OP=OP,

∴△AOP≌△DOP.   ……………1分

∴PA=PD,∠1=∠2.

∵∠APB+∠MON=180°,

∴∠1+∠3=180°.

∵∠2+∠4=180°,

∴∠3=∠4.

∴PD=PB.

∴PA=PB.   …………… 2分

(2)

∵PA=PB,

∴∠3=∠4.

∵∠1+∠2+∠APB=180°,且∠3+∠4+∠APB=180°,

∴∠1+∠2=∠3+∠4.

∴∠2=∠4.

∵∠5=∠5,

∴△PBC∽△POB.  

.  …………… 5分

 

(3)作BE⊥OP交OP于E,

∵∠AOB=600,且OP平分∠MON,

∴∠1=∠2=30°.

∵∠AOB+∠APB=180°,

∴∠APB=120°.

∵PA=PB,

∴∠5=∠6=30°.

∵∠3+∠4=∠7,

∴∠3+∠4=∠7=(180°30°)÷2=75°.

∵在Rt△OBE中,∠3=600,OB=2

∴∠4=150,OE=,BE=1

∴∠4+∠5=450

∴在Rt△BPE中,EP=BE=1

∴OP=    …………… 8分

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正比例函数和反比例函数的图象都经过点M(-3,-1),且知点P(-1,-精英家教网3)是反比例函数图象上的点:
(1)分别求出正比例函数和反比例函数的解析式;
(2)作PA⊥x轴,垂足为A,当点Q在直线MO上运动时,作QB⊥y轴,垂足为B,问:直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由;
(3)当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的?OPCQ,求?OPCQ周长的最小值以及取得最小值时点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知;如图,AB是半圆O的直径,弦CD∥AB,直线CM、DN分别切半圆于点C、D,且分别和直线AB相交于点M、N.
(1)求证;MO=NO;
(2)设∠M=30°,求证:MN=4CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知平面直角坐标系xOy(如图),一次函数y=
3
4
x+3
的图象与y轴交于点A,点M在正比例函数y=
3
2
x
的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.
(1)求线段AM的长;
(2)求这个二次函数的解析式;
(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数y=
3
4
x+3
的图象上,且四边形ABCD是菱形,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠MON=45°,P是∠MON内的一点,点G、H分别是P点关于MO、NO的对称点,GH与OM,ON分别相交于点A,B.已知GH=5cm,则△PAB的周长是
5
5
 cm.若连接GO、HO,则△GHO是
等腰直角
等腰直角
三角形.

查看答案和解析>>

同步练习册答案