精英家教网 > 初中数学 > 题目详情
(2005•中原区)有5条线段长度分别为1,2,3,5,7,从中任取三条为一组,它们一定能构成三角形的频率为( )
A.0.05
B.0.10
C.0.15
D.0.20
【答案】分析:先求出5条线段中的任意3条一组,共有多少组,再求出能构成三角形的有几种,根据频率公式即可求解.
解答:解:5条线段中的任意3条一组,共有1,2,3;1,2,5;1,2,7;1,3,5;1,3,7;1,5,7;2,3,5;2,3,7;2,5,7;3,5,7共10种,
其中能构成三角形的有3,5,7一种,
所以一定能构成三角形的频率是1÷10=0.1.
故选B.
点评:首先3条任意一组找到所有的情况,然后根据三角形的三边关系正确找到能构成三角形的情况,再根据频率=频数÷总数进行计算.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2005•中原区)如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

查看答案和解析>>

同步练习册答案