精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.

(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为

(1)
(2)m的值为
(3)①点D的坐标为(,﹣2)。
②m的值为m=或m=或m=或m=

解析试题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式。
∵抛物线y=ax2+bx﹣2经过点A(﹣1,0)、B(4,0),
,解得
∴抛物线所对应的函数关系式为
(2)根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入,即可求出m的值。
∵△CMN是等腰直角三角形,∠CMN=90°,∴CM=MN=2。∴点C的坐标为(m,2)。
∵点C(m,2)在抛物线上,∴
解得m1=,m2=
∴点C在这条抛物线上时,m的值为
(3)①先由旋转的性质得出点D的坐标为(m,﹣2),根据二次函数的性质求出抛物线的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标。
②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:

如果E点在E1的位置时,
∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),
∴点E1的(m﹣2,0)。
∵点E1在抛物线的对称轴x=上,
∴m﹣2=,解得m=
如果E点在E2的位置时,
∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),
∴点E2的(m+2,﹣4)。
∵点E2在抛物线的对称轴x=上,∴m+2=,解得m=
如果E点在E3的位置时,
∵点D的坐标为(m,﹣2),∴点E3的(m,2)。
∵点E3在抛物线的对称轴x=上,∴m=
如果E点在E4的位置时,
∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2)。
∵点E4在抛物线的对称轴x=上,∴m+4=,解得m=
综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=或m=或m=或m=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为   
(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川绵阳12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.

(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川广安10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).

(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.

(1)求该抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.

(1)求此抛物线的解析式.
(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.

(1)求点A、B、C的坐标和直线BC的解析式;
(2)求△ODE面积的最大值及相应的点E的坐标;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.

(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知反比例函数的图像经过P(-1,2),则这个函数的图像位于(  )

A.第二,三象限B.第一,三象限
C.第三,四象限D.第二,四象限

查看答案和解析>>

同步练习册答案