精英家教网 > 初中数学 > 题目详情
若矩形ABCD的对角线长为10,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长是   
20

试题分析:∵矩形ABCD的对角线长为10,

∴AC=BD=10。
∵点E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF=HG=AC=×10=5,EH=GF=BD=×10=5。
∴四边形EFGH的周长为EF+FG+GH+HE=5+5+5+5=20。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,DC∥AB,BD平分∠ADC,∠ADC=60°,过点B作BE⊥DC,过点A作AF⊥BD,垂足分别为E、F,连接EF判断△BEF的形状,并说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则     (用含k的代数式表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.
求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分别为E,D,DE=3,BD=5,则腰长AB=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=250,则∠2=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中,正确的是【   】
A.同位角相等B.对角线相等的四边形是平行四边形
C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是   

查看答案和解析>>

同步练习册答案