精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AEBD相交于点P,BFAE于点F.若BP=4,则PF的长(

A. 2 B. 3 C. 1 D. 8

【答案】A

【解析】

试题证△ABD≌△CAE,推出∠ABD=∠CAE,求出∠BPF=∠APD=60°,得出∠PBF=30°,根据含30度角的直角三角形性质求出即可.

解:∵△ABC是等边三角形,

∴AB=AC

∴∠BAC=∠C

△ABD△CAE中,

∴△ABD≌△CAESAS).

∴∠ABD=∠CAE

∴∠APD=∠ABP+∠PAB=∠BAC=60°

∴∠BPF=∠APD=60°

∵∠BFP=90°∠BPF=60°

∴∠PBF=30°

∴PF=

故选;A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:

如图,若点B把线段分成两条长度相等的线段ABBC,则点B叫做线段AC的中点.

回答问题:

(1)如图,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.

A是线段DB的中点,则点D表示的数是   

E是线段AC的中点,求点E表示的数.

(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.

若点P表示的数是1,则mn可能的值是   (填写符合要求的序号);

im=0,n=2;(iim=﹣5,n=7;(iiim=0.5,n=1.5;(ivm=﹣1,n=2

直接用含mn的代数式表示点P表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是弦.
(1)请你按下面步骤画图(画图或作辅助线时先使用铅笔画出,确定后必须使用黑色字迹的签字笔描黑); 第一步,过点A作∠BAC的角平分线,交⊙O于点D;
第二步,过点D作AC的垂线,交AC的延长线于点E.
第三步,连接BD.
(2)求证:AD2=AEAB;
(3)连接EO,交AD于点F,若5AC=3AB,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)计算:π0+21 ﹣|﹣ |;
(2) ,其中x=4,y=﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列多项式的乘法中,不能用平方差公式计算的是(  )

A. (a+b)(a-b) B. (x-2y)(-x+2y) C. (x-2y)(-x-2y) D. (x-y)(y+0.5x)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其均匀分成四个小长方形,然后按图②的形状拼成一个正方形.

(1)你认为图②中阴影部分的正方形的边长等于________;

(2)请你用两种不同的方法表示图②中阴影部分的面积,方法一:__________________,方法二:________________;

(3)观察图②,你能写出代数式(m+n)2,(m-n)2,mn之间的关系吗?

(4)应用:已知m+n=11,mn=28(m>n),求m,n的值.

①  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.

(1)求证:BD=CE;(2)求锐角∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为   度;

(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;

(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。

查看答案和解析>>

同步练习册答案