精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BDBC;
(3)当△PCD的面积最大时,求点P的坐标.

【答案】
(1)解:由题意,得

解得

∴抛物线的解析式为y= ﹣x﹣4


(2)解:设点P运动到点(x,0)时,有BP2=BDBC,

令x=0时,则y=﹣4,

∴点C的坐标为(0,﹣4).

∵PD∥AC,

∴△BPD∽△BAC,

∵BC= = =2

AB=6,BP=x﹣(﹣2)=x+2.

∴BD= = =

∵BP2=BDBC,

∴(x+2)2= ×2

解得x1= ,x2=﹣2(﹣2不合题意,舍去),

∴点P的坐标是( ,0),即当点P运动到( ,0)时,BP2=BDBC


(3)解:∵△BPD∽△BAC,

×

SPDC=SPBC﹣SPBD= ×(x+2)×4﹣

∴当x=1时,SPDC有最大值为3.

即点P的坐标为(1,0)时,△PDC的面积最大.


【解析】(1)利用待定系数法把AB坐标代入解析式即可;(2)先由PD∥AC可得△BPD∽△BAC,得出比例式,用x的式子表示BD,代入到 BP2=BDBC
求出x;(3)用作差法表示△PCD的面积,即SPDC=SPBC﹣SPBD,构建出二次函数,用配方法求出最值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数 (x>0)的图象经过点D.已知SBCE=2,则k的值是( )

A.2
B.﹣2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:

X

﹣1

0

1

3

y

﹣1

3

5

3

下列结论:
⑴ac<0;
⑵当x>1时,y的值随x值的增大而减小.
⑶3是方程ax2+(b﹣1)x+c=0的一个根;
⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的个数为( )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[数学实验探索活动]

实验材料现有若干块如图①所示的正方形和长方形硬纸片.

实验目的:

用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.

例如,选取正方形、长方形硬纸片共 6 块,拼出一个如图②的长方形,计算它的面积, 写出相应的等式有 a2+3ab+2b2=(a+2b)(a+b) (a+2b)(a+b) =a2+3ab+2b2

问题探索:

(1) 小明想用拼图的方法解释多项式乘法(2a+b)(a+b) =2a2+3ab+b2 ,那么需要两种正方形纸片 张,长方形纸片 张;

(2)选取正方形、长方形硬纸片共 8 块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;

(3)试借助拼图的方法,把二次三项式 2a2+5ab+2b2 分解因式,并把所拼的图形画在虚线方框内.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,AD是高,EF分别是ABAC的中点,

(1)AB=10,AC=8,求四边形AEDF的周长;

(2)EFAD有怎样的位置关系,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲有存款600元,乙有存款2000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.

1)列出甲、乙的存款额y1y2(元)与存款月数x(月)之间的函数关系式,画出函数图象.

2)请问到第几个月,甲的存款额超过乙的存款额?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,一次函数y=kx+b的图象与反比例函数的图象交于 两点.

1)求一次函数和反比例函数的解析式;

2)设点是反比例函数图象上两点,,求的值;

3)若Mx1y1)和Nx2y2)两点在直线AB上,如图2所示,过MN两点分别作y轴的平行线交双曲线于EF,已知﹣3x10x21,请探究当x1x2满足什么关系时,MNEF.

查看答案和解析>>

同步练习册答案