精英家教网 > 初中数学 > 题目详情

【题目】如图,中,平分,且,与相交于点边的中点,连接相交于点,下列结论正确的有( )

;②;③;④是等腰三角形;⑤.

A.B.C.D.

【答案】B

【解析】

只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG67.5°,即可判断①②③④正确,作GMBDM,只要证明GHDG即可判断⑤错误.

CDABBEAC

∴∠BDC=∠ADC=∠AEB90°,

∴∠A+∠ABE90°,∠ABE+∠DFB90°,

∴∠A=∠DFB

∵∠ABC45°,∠BDC90°,

∴∠DCB90°45°=45°=∠DBC

BDDC

在△BDF和△CDA

∴△BDF≌△CDAAAS),

BFAC,故①正确.

∵∠ABE=∠EBC22.5°,BEAC

∴∠A=∠BCA67.5°,故③正确,

BABC

BEAC

AEECACBF,故②正确,

BE平分∠ABC,∠ABC45°,

∴∠ABE=∠CBE22.5°,

∵∠BDF=∠BHG90°,

∴∠BGH=∠BFD67.5°,

∴∠DGF=∠DFG67.5°,

DGDF,故④正确.

GMABM

∵∠GBM=∠GBHGHBC

GHGMDG

SDGBSGHB

SABESBCE

S四边形ADGES四边形GHCE.故⑤错误,

∴①②③④正确,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,, , 的延长线于.

(1)求证:

(2)如果连结,请写出的关系并证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的网格中有四条线段ABCDEFGH(线段端点在格点上),

选取其中三条线段,使得这三条线段能围成一个直角三角形.

答:选取的三条线段为

只变动其中两条线段的位置,在原图中画出一个满足上题的直角三角形(顶点仍在格点,并标上必要的字母).

答:画出的直角三角形为△

所画直角三角形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.

(1)2中阴影部分的面积请用两种方法表示: ②_________.

(2)观察图2,请你写出式子(mn)2(mn)2mn之间的等量关系:

(3)xy=-6xy2.75,求xy的值.

(4)观察图3,你能得到怎样的代数恒等式?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.

(1)求A,B两点的坐标;

(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程.

1)若该方程有实数根,求a的取值范围;

2)若该方程一个根为-1,求方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至,旋转角为.

1)当点恰好落在EF边上时,求旋转角的值;

2)如图2GBC的中点,且00900,求证:

3)小长方形CEFD绕点C顺时针旋转一周的过程中,能否全等?若能,直接写出旋转角的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究

小聪将命题用符号语言表示为:在ABCDEF中,AC=DFBC=EFB=E

小聪的探究方法是对∠B分为直角、钝角、锐角三种情况进行探究.

第一种情况:当∠B 是直角时,如图1ABCDEF中,AC=DFBC=EFB=E=90°,根据“HL”定理,可以知道RtABCRtDEF

第二种情况:当∠B 是锐角时,如图2BC=EFB=E90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则ABCDEF的关系是   

A.全等 B.不全等 C.不一定全等

第三种情况:当∠B是钝角时,如图3,在ABCDEF中,AC=DFBC=EFB=E90°.过点CAB边的垂线交AB延长线于点M;同理过点FDE边的垂线交DE延长线于N,根据“ASA”,可以知道CBM≌△FEN,请补全图形,进而证出ABC≌△DEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊿中,,点分别在 边上,且, .

⑴.求证:⊿是等腰三角形;

⑵.当 时,求的度数.

查看答案和解析>>

同步练习册答案