精英家教网 > 初中数学 > 题目详情
已知:如图,直线MN切⊙O于点C,AB为⊙O的直径,延长BA交直线MN于M点,AE⊥MN精英家教网,BF⊥MN,E、F分别为垂足,BF交⊙O于G,连接AC、BC,过点C作CD⊥AB,D为垂足,连接OC、CG.下列结论,其中正确的有(  )
①CD=CF=CE;       ②EF2=4AE•BF;
③AD•DB=FG•FB;    ④MC•CF=MA•BF.
A、①②③B、②③④C、①③④D、①②③④
分析:①由MN与圆O相切于点C,根据弦切角定理可得∠ACE=∠ABC,又由AB为圆O直径,可得AC⊥BC,则可证得Rt△AEC≌Rt△ADC,同理可得Rt△BCD≌Rt△BCF,根据全等三角形的对应边相等,即可得CD=CF=CE;
②由①可证得Rt△ACE∽Rt△CBF,根据相似三角形的对应边成比例,与CE=CF=
1
2
EF,即可证得EF2=4AE•BF;
③由Rt△BCD≌Rt△BCF与Rt△ACE≌Rt△GCF即可证得AD•DB=FG•FB;
④由△AME∽△CMD与Rt△ACD∽Rt△BCF.利用相似三角形的对应边成比例,即可求得MC•CF=MA•BF.
解答:解:∵MN与圆O相切于点C,
∴∠ACE=∠ABC,
又∵AB为圆O直径,
∴AC⊥BC,
∵CD⊥AB,
∴∠ABC=90°-∠BAC=90°-∠DAC=∠ACD,
∴∠ACE=∠ACD,
∵∠AEC=∠ADC=90°,
在Rt△AEC和Rt△ADC中,
∠AEC=∠ADC
∠ACE=∠ACD
AC=AC

∴Rt△AEC≌Rt△ADC(AAS),
∴CD=CE,
同理,Rt△BCD≌Rt△BCF,
∴CD=CE=CF,
故①正确;

由①的过程知:∠ACE=∠DBC=∠FBC,
∵∠AEC=∠CFB=90°,
∴Rt△ACE∽Rt△CBF,
AE
CF
=
CE
BF

∴CE•CF=AE•BF,
由①的结论知,CE=CF=
1
2
EF,
1
4
EF2=AE•BF
∴EF2=4AE•BF,
故②正确;

由①过程知,Rt△BCD≌Rt△BCF
∴DB=FB…(1)
∵MN为⊙O切线,
∴∠FCG=∠FBC=∠ABC=∠ACE,
由①结论知,CE=CF,
∵∠AEC=∠GFC=90°,
在Rt△ACE和Rt△GCF中,
∠AEC=∠GFC
CE=CF
∠ACE=∠FCG

∴Rt△ACE≌Rt△GCF(ASA),
而由①的过程知,Rt△ACE≌Rt△ACD,
∴Rt△ACD≌Rt△GCF,
∴AD=FG…(2)
由(1)(2)得到:AD•DB=FG•FB;
故③正确;

∵∠M=∠M,∠AEM=∠ADC,
∴△AME∽△CMD,
MC
DC
=
MA
AE

∵AE=AD,
MC
DC
=
MA
DA

MC
MA
=
MA
DA
,…(3)
又∵Rt△ACD∽Rt△BCF,
DC
DA
=
BF
CF
,…(4)
由(3)(4)得到:
MC
MA
=
BF
CF

∴MC•CF=MA•BF;
故④正确.
故选D.
点评:此题考查了圆周角定理,切线的性质,相似三角形与全等三角形的判定与性质等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意比例的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•路北区三模)已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若∠ADE=30°,⊙O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN,垂足为E.∠ADE=30°,⊙O的半径为2,图中阴影部分的面积为
3
-
3
3
-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,直线MN交⊙O于A、B两点,AC是直径,DE切⊙O于D,DE⊥MN于E.
(1)求证:AD平分∠CAM.
(2)若DE=8cm,AE=4cm,求⊙O的半径.

查看答案和解析>>

同步练习册答案