【题目】在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=_____.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为 ,其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )
A. 4 个 B. 3 个 C. 2 个 D. 1 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,∠BAD=α,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.
(1)如图1,当α=β=90°时,EB与EF的数量关系为 .
(2)如图2,当α=60°,β=120°时.
①依题意补全图形;
②探究(1)的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明;
(3)在此基础上对一般的图形进行了探究,设∠ABE=γ,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离,连接BF,设AP=x.
(1)△ABC的面积等于 ;
(2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值.
(3)当BP=BF时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系O中的点P和⊙C,给出如下定义:若⊙C上存在两个点M,N,使得∠MPN=60°,则称P为⊙C 的关联点。已知点D(,),E(0,-2),F(,0)
(1)当⊙O的半径为1时,
①在点O,D,E,F中,⊙O的关联点是______ ____;
②如果G(0,t)是⊙O的关联点,则t的取值范围是 ;
(2)如果线段EF上每一个点都是⊙O的关联点,那么⊙O的半径最小为 ;
(3)Rt⊿ABC中,∠C=90,BC=8,∠A=30,⊙P的半径为1,当点P运动时,始终确保⊿ABC的三条边中至少有一条边上恰好有唯一的⊙P的关联点。请你画出点P所走过的路线围成的图形的示意图,并在下面横线上直接写出它的总长。
答:点P经过的路线围成的图形的总长为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,完成下列各题:
将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.
求出它的图象与坐标轴的交点坐标.
在直角坐标系中,画出它的图象.
根据图象说明:当为何值时,;当为何值时,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com