精英家教网 > 初中数学 > 题目详情
7.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.
(1)求证:AC2=CD•BC;
(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.
①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;
②若∠B=30°,求证:四边形AKEC是菱形.

分析 (1)欲证明AC2=CD•BC,只需推知△ACD∽△BCA即可;
(2)①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;
②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.

解答 证明:(1)∵AC平分∠BCD,
∴∠DCA=∠ACB.
又∵AC⊥AB,AD⊥AE,
∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,
∴∠DAC=∠EAB.
又∵E是BC的中点,
∴AE=BE,
∴∠EAB=∠ABC,
∴∠DAC=∠ABC,
∴△ACD∽△BCA,
∴$\frac{AC}{BC}$=$\frac{CD}{AC}$,
∴AC2=CD•BC;

(2)①证明:连接AH.
∵∠ADC=∠BAC=90°,点H、D关于AC对称,
∴AH⊥BC.
∵EG⊥AB,AE=BE,
∴点G是AB的中点,
∴HG=AG,
∴∠GAH=GHA.
∵点F为AC的中点,
∴AF=FH,
∴∠HAF=∠FHA,
∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,
∴FH⊥GH;
②∵EK⊥AB,AC⊥AB,
∴EK∥AC,
又∵∠B=30°,
∴AC=$\frac{1}{2}$BC=EB=EC.
又EK=EB,
∴EK=AC,
即AK=KE=EC=CA,
∴四边形AKEC是菱形.

点评 本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30度角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图1,已知点A(0,9),B(24,9),C(22+3$\sqrt{3}$,0),半圆P的直径MN=6$\sqrt{3}$,且P、A重合时,点M、N在AB上,过点C的直线l与x轴的夹角α为60°.现点P从A出发以每秒1个单位长度的速度向B运动,与此同时,半圆P以每秒15°的速度绕点P顺时针旋转,直线l以每秒1个单位长度的速度沿x轴负方向运动(与x轴的交点为Q).当P、B重合时,半圆P与直线l停止运动.设点P的运动时间为t秒.
【发现】
(1)点N距x轴的最近距离为9-3$\sqrt{3}$,此时,PA的长为6;
(2)t=9时,MN所在直线是否经过原点?请说明理由.
(3)如图3,当点P在直线l时,求直线l分半圆P所成两部分的面积比.
【拓展】
如图4,当半圆P在直线左侧,且与直线l相切时,求点P的坐标.
【探究】
求出直线l与半圆P有公共点的时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是(  )
年级七年级八年级九年级
合格人数270262254
A.七年级的合格率最高B.八年级的学生人数为262名
C.八年级的合格率高于全校的合格率D.九年级的合格人数最少

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.
(1)求证:直线BF是⊙O的切线.
(2)若CD=2$\sqrt{3}$,OP=1,求线段BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为(  )
A.90°B.120°C.135°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,在?ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算$\sqrt{2}$cos55°,按键顺序正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.将抛物线y=-x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=-x2+6x-11.

查看答案和解析>>

同步练习册答案