精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E为BC的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)若EC=3,BD=2$\sqrt{6}$,求AC的长度.

分析 (1)运用垂径定理、直角三角形的性质证明∠ODE=90°即可解决问题;
(2)由切割线定理可求出AB的长,再由勾股定理即可求出AC的长度.

解答 解:(1)证明:连接CD,OD,
∵AC是直径,
∴∠ADC=90°,
∴∠CDB=90°,
又∵EB=EC,
∴DE为直角△DCB斜边的中线,
∴DE=CE=$\frac{1}{2}$BC,
∴∠DCE=∠CDE,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠ODC+∠CDE=∠OCD+∠DCE=∠ACB=90°,
∴∠ODE=90°,
∴DE是⊙O的切线;
(2)∵EC=3,BC=6,BC是圆的切线,
∴BC2=BD•BA,
即(2CE)2=BD•BA,
∴AB=3$\sqrt{6}$,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=3$\sqrt{2}$.

点评 本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了直角三角形斜边上的中线性质和勾股定理的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.(1)解下列方程
①3x-2(x-2)=1
②$\frac{x+4}{5}$-2=$\frac{2x-3}{2}$
(2)当x为何值时,式子x-$\frac{x-1}{3}$的值与7-$\frac{x+3}{5}$的值相等?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解不等式组:$\left\{\begin{array}{l}{\frac{3x-1}{2}+\frac{x-2}{3}<\frac{2x+2}{6}}\\{\frac{2-5x}{3}+1≤\frac{5x}{4}}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,将四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,若AE∥CF且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若AC⊥EF,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:-32+4sin60°-|1-$\sqrt{3}$|+(π-2017)0+($\frac{1}{2}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:$\frac{{a}^{2}-2a+1}{a-2}$÷(a+2+$\frac{3}{a-2}$),其中-$\sqrt{3}$≤a≤$\sqrt{5}$,且a为整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简,再求值:3(x+y)2-(2x-y)(2x+y),其中x=-1,y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)$({2\sqrt{12}-3\sqrt{\frac{1}{3}}})×\sqrt{6}$.
(2)$\frac{2}{3}\sqrt{9x}-({6\sqrt{\frac{x}{4}}+2\sqrt{x}})(x>0)$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,已知抛物线y=-x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).
(1)求抛物线的函数表达式;
(2)点P是抛物线上位于第一象限内的动点,是否存在点P,使△PBC得面积最大,若存在,请求出点P的坐标和△PBC面积的最大值;若不存在,请说明理由;
(3)如图2,直线l经过A、C两点,点Q时位于y轴左侧的抛物线上的一动点,经过点B和点Q的直线m,与y轴相交于点M,与直线l相交于点N,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案