20£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=4£¬AD=3£¬¡ÏDABµÄ½Çƽ·ÖÏß½»±ßCDÓÚµãE£®µãPÔÚÉäÏßAEÉÏÒÔÿÃë$\sqrt{2}$¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÉäÏßAE·½Ïò´ÓµãA¿ªÊ¼Ô˶¯£¬¹ýµãP×÷PQ¡ÍABÓÚµãQ£¬ÒÔPQΪ±ßÏòÓÒ×÷ƽÐÐËıßÐÎPQMN£¬µãNÔÚÉäÏßAEÉÏ£¬ÇÒAP=PN£®ÉèPµãÔ˶¯Ê±¼äΪtÃ룮
£¨1£©µ±µãMÂäÔÚBCÉÏʱ£¬ÇóÏ߶ÎPQµÄ³¤£®
£¨2£©µ±µãCÂäÔÚƽÐÐËıßÐÎPQMNµÄ¶Ô½ÇÏßÉÏʱ£¬ÇótµÄÖµ£®
£¨3£©ÉèƽÐÐËıßÐÎPQMNÓë¾ØÐÎABCDÖغϲ¿·ÖÃæ»ýΪS£¬µ±µãPÔÚÏ߶ÎAEÉÏÔ˶¯Ê±£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£®
£¨4£©Ö±½Óд³öÔÚµãP¡¢QÔ˶¯µÄ¹ý³ÌÖУ¬Õû¸öͼÐÎÖÐÐγɵÄÈý½ÇÐδæÔÚÈ«µÈÈý½ÇÐÎʱtµÄÖµ£¨²»Ìí¼ÓÈκθ¨ÖúÏߣ©£®

·ÖÎö £¨1£©Èçͼ1ÖУ¬µ±µãMÔÚBCÉÏʱ£¬Ö»ÒªÖ¤Ã÷AQ=QB¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ùµ±µãCÂäÔÚ¶Ô½ÇÏßPMÉÏʱ£¬µãPÓëµãEÖغϣ¬Èçͼ2ÖУ¬´Ëʱ£¬AP=3$\sqrt{2}$£¬Óɴ˽â¾öÎÊÌ⣮¢Úµ±µãCÂäÔÚ¶Ô½ÇÏßNQÉÏʱ£¬Èçͼ3ÖУ¬ÑÓ³¤NM½»ABµÄÑÓ³¤ÏßÓÚG£¬Ö»ÒªÖ¤Ã÷BC=2QB¼´¿ÉÁгö·½³Ì½â¾öÎÊÌ⣮
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¢ÙÈçͼ4ÖУ¬µ±0£¼t¡Ü$\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇƽÐÐËıßÐÎPQMN£®¢ÚÈçͼ5ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQMGE£®¢ÛÈçͼ6ÖУ¬µ±2£¼t¡Ü3ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQGCE£¬ÑÓ³¤QP½»CDÓÚK£®·Ö±ðÇó½â¼´¿É£®
£¨4£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¼´¿É£©¢ÙÈçͼ7ÖУ¬µ±µãQÊÇABÖеãʱ£¬¡÷APQ¡Õ¡÷QMB£®¢ÚÈçͼ8ÖУ¬µ±µãPÓëµãEÖغÏʱ£¬¡÷APQ¡Õ¡÷AED£®¢ÛÈçͼ9ÖУ¬µ±¡÷PEK¡Õ¡÷QGBʱ£¬·Ö±ðÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬

µ±µãMÔÚBCÉÏʱ£¬¡ßPQ¡ÎBN£¬AP=PN£¬
¡àAQ=QB£¬¡ßAB=4£¬
¡àAQ=2£¬AP=$\sqrt{2}$AQ=2$\sqrt{2}$£®

£¨2£©¢Ùµ±µãCÂäÔÚ¶Ô½ÇÏßPMÉÏʱ£¬µãPÓëµãEÖغϣ¬Èçͼ2ÖУ¬

´Ëʱ£¬AP=3$\sqrt{2}$£¬
¡àt=$\frac{3\sqrt{2}}{\sqrt{2}}$=3£¬
¢Úµ±µãCÂäÔÚ¶Ô½ÇÏßNQÉÏʱ£¬Èçͼ3ÖУ¬ÑÓ³¤NM½»ABµÄÑÓ³¤ÏßÓÚG£®

¡ßBC¡ÎNG£¬
¡à$\frac{BC}{GN}$=$\frac{QB}{QG}$£¬
¡à$\frac{QB}{BC}$=$\frac{QG}{GN}$=$\frac{1}{2}$£¬
¡à3=2£¨4-t£©£¬
¡àt=$\frac{5}{2}$£¬
×ÛÉÏËùÊöµ±t=$\frac{5}{2}$»ò3sʱ£¬µãCÔÚÐÐËıßÐÎPQMNµÄ¶Ô½ÇÏßÉÏ£®

£¨3£©¢ÙÈçͼ4ÖУ¬µ±0£¼t¡Ü$\frac{3}{2}$ʱ£¬Öصþ²¿·ÖÊÇƽÐÐËıßÐÎPQMN£¬S=t2£¬

¢ÚÈçͼ5ÖУ¬µ±$\frac{3}{2}$£¼t¡Ü2ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQMGE£¬

S=SƽÐÐËıßÐÎPQMN-S¡÷NGE=t2-$\frac{1}{2}$[$\frac{2\sqrt{2}t-3\sqrt{2}}{\sqrt{2}}$]2=-t2+6t-$\frac{9}{2}$£®
¢ÛÈçͼ6ÖУ¬µ±2£¼t¡Ü3ʱ£¬Öصþ²¿·ÖÊÇÎå±ßÐÎPQGCE£¬ÑÓ³¤QP½»CDÓÚK£®

S=S¾ØÐÎQBCK-S¡÷KPE-S¡÷QBG=3£¨4-t£©-$\frac{1}{2}$£¨$\frac{3\sqrt{2}-2\sqrt{2}t}{\sqrt{2}}$£©2-$\frac{1}{2}$£¨4-t£©2=-t2+4t-$\frac{1}{2}$£¬
×ÛÉÏËùÊöS=$\left\{\begin{array}{l}{{t}^{2}}&{£¨0£¼t¡Ü\frac{3}{2}£©}\\{-{t}^{2}+6t-\frac{9}{2}}&{£¨\frac{3}{2}£¼t¡Ü2£©}\\{-{t}^{2}+4t-\frac{1}{2}}&{£¨2£¼t¡Ü3£©}\end{array}\right.$£®


£¨4£©¢ÙÈçͼ7ÖУ¬µ±µãQÊÇABÖеãʱ£¬¡÷APQ¡Õ¡÷QMB£¬´Ëʱt=2£®

¢ÚÈçͼ8ÖУ¬µ±µãPÓëµãEÖغÏʱ£¬¡÷APQ¡Õ¡÷AED£¬´Ëʱt=3£®

¢ÛÈçͼ9ÖУ¬µ±¡÷PEK¡Õ¡÷QGBʱ£¬ÓÉEK=BQµÃµ½£¬$\frac{\sqrt{2}t-3\sqrt{2}}{\sqrt{2}}$=4-t£¬½âµÃt=$\frac{7}{2}$£¬

×ÛÉÏËùÊöt=2s»ò3s»ò$\frac{7}{2}$sʱ£¬Õû¸öͼÐÎÖÐÐγɵÄÈý½ÇÐδæÔÚÈ«µÈÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¡¢Æ½ÒƱ任¡¢È«µÈÈý½ÇÐεÄÅж¨µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»á·ÖÀàÌÖÂÛ£¬Ñ§»á»­ºÃͼÐΣ¬Ñ§»áÀûÓ÷ָÇóÃæ»ý£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ð¡Ã÷ÔÚÊîÆÚÉç»áʵ¼ù»î¶¯ÖУ¬ÒÔÿǧ¿Ë10ÔªµÄ¼Û¸ñ´ÓÅú·¢Êг¡¹º½øÈô¸Éǧ¿ËÀóÖ¦µ½Êг¡ÉÏÈ¥ÏúÊÛ£¬ÔÚÏúÊÛÁË40ǧ¿ËÖ®ºó£¬ÓàϵÄÀóÖ¦£¬Ã¿Ç§¿Ë½µ¼Û4Ôª£¬È«²¿ÊÛÍ꣮ÏúÊÛ½ð¶îy£¨Ôª£©ÓëÊÛ³öÀóÖ¦µÄÖØÁ¿x£¨Ç§¿Ë£©Ö®¼äµÄ¹ØϵÈçͼËùʾ£®ÇëÄã¸ù¾ÝͼÏóÌṩµÄÐÅÏ¢Íê³ÉÒÔÏÂÎÊÌ⣺
£¨1£©ÔÚÕâ¸ö±ä»¯¹ØϵÖУ¬×Ô±äÁ¿ÊÇx£¬Òò±äÁ¿ÊÇy£»
£¨2£©¢Ù½µ¼ÛÇ°ÊÛ³öÀóÖ¦µÄµ¥¼ÛΪ16Ôª/ǧ¿Ë£¬¢Ú½µ¼ÛÇ°ÏúÊÛ½ð¶îy£¨Ôª£©ÓëÊÛ³öÀóÖ¦µÄÖØÁ¿x£¨Ç§¿Ë£©Ö®¼äµÄ¹ØϵʽΪy=16x£»
£¨3£©Ð¡Ã÷´ÓÅú·¢Êг¡ÉϹ²¹º½øÁ˶àÉÙǧ¿ËµÄÀóÖ¦£¿
£¨4£©Ð¡Ã÷Õâ´ÎÂôÀóÖ¦¹²×¬Á˶àÉÙÇ®£¨²»¼ÆÆäËü³É±¾£©£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¡÷ABCΪÈÎÒâÈý½ÇÐΣ®
£¨1£©Èçͼ1£¬·Ö±ðÒÔAB¡¢ACΪ±ß£¬ÏòÐÎÍâ×÷Á½¸öµÈ±ßÈý½ÇÐΡ÷ABD¡¢¡÷ACE£¬Á¬½ÓBE¡¢CD½»ÓÚµãO£¬ÊÔÖ¤Ã÷£ºOA+OC=OE£®
£¨2£©Èçͼ2£¬·Ö±ðÒÔ±ßAB¡¢ACΪµ×£¬ÏòÐÎÍâ×÷Á½¸öµÈÑüÖ±½ÇÈý½ÇÐΡ÷ABD¡¢¡÷ACE£¬È¡BCµÄÖеãF£¬Á¬½ÓDF£¬EF£¬ÊÔÅжÏDFÓëEFµÄÊýÁ¿¹ØϵºÍλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®
£¨3£©Èçͼ3£¬·Ö±ðÒÔ±ßAB¡¢AC¡¢BCΪµ×£¬ÏòÐÎÍâ×÷Èý¸ö¶¥½ÇΪ120¡ãµÈÑüÈý½ÇÐΡ÷ABD¡¢¡÷ACE¡¢¡÷BCF£¬ÊÔÅжϡ÷DEFµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨4£©Èçͼ4£¬ÔÚ±ßÉÏÏòÐÎÍâ×÷¡÷ABD¡¢¡÷ACE¡¢¡÷BCF£¬Ê¹µÃ¡ÏABD=¡ÏACE=45¡ã£¬¡ÏBAD=¡ÏCAE=30¡ã£¬¡ÏFBC=¡ÏFCB=15¡ã£¬ÊÔÅжϡ÷DEFµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ä³ÈÕµÄ×îµÍÆøÎÂΪ-2¡æ£¬×î¸ßÆøαÈ×îµÍÆøθßΪ6¡æ£¬ÔòÕâÒ»ÌìµÄ×î¸ßÆøÎÂÊÇ£¨¡¡¡¡£©
A£®8¡æB£®6¡æC£®4¡æD£®2¡æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½â¹ØÓÚxµÄ·½³Ì£ºax2=3£¨a¡Ù0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¼ÆË㣺
£¨1£©£¨-1£©2004+£¨-$\frac{1}{2}$£©-2-£¨3.14-¦Ð£©0 
£¨2£©£¨2a+3b£©£¨2a-3b£©+£¨a-3b£©2
£¨3£©£¨-2x2y+6x3y4-8xy£©¡Â£¨-2xy£©  
£¨4£©20052-2007¡Á2003
£¨5£©»¯¼òÔÙÇóÖµ£ºx£¨x+2y£©-£¨x+1£©2+2x£¬ÆäÖÐx=$\frac{1}{25}$£¬y=-25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®º¯Êý$y=\frac{1}{x-3}$µÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇx¡Ù3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÌìË®ÊÐijÆóÒµ½Óµ½Ò»ÅúôÕ×ÓÉú²úÈÎÎñ£¬°´ÒªÇóÔÚ19ÌìÄÚÍê³É£¬Ô¼¶¨ÕâÅúôÕ×ӵijö³§¼ÛΪÿֻ4Ôª£¬Îª°´Ê±Íê³ÉÈÎÎñ£¬¸ÃÆóÒµÕÐÊÕÁËй¤ÈË£¬Éèй¤ÈËÀîºìµÚxÌìÉú²úµÄôÕ×ÓÊýÁ¿ÎªyÖ»£¬yÓëxÂú×ãÈçϹØϵ£ºy=$\left\{\begin{array}{l}{32x£¨0¡Üx¡Ü5£©}\\{20x+60£¨5£¼x¡Ü19£©}\end{array}\right.$
£¨1£©ÀîºìµÚ¼¸ÌìÉú²úµÄôÕ×ÓÊýÁ¿Îª260Ö»£¿
£¨2£©Èçͼ£¬ÉèµÚxÌìÉú²úµÄÿֻôÕ×ӵijɱ¾ÊÇpÔª£¬pÓëxÖ®¼äµÄ¹Øϵ¿ÉÓÃͼÖеĺ¯ÊýͼÏóÀ´¿Ì»­£¬ÈôÀîºìµÚxÌì´´ÔìµÄÀûÈóΪwÔª£¬ÇówÓëxÖ®¼äµÄº¯Êý±í´ïʽ£¬²¢Çó³öµÚ¼¸ÌìµÄÀûÈó×î´ó£¿×î´óÀûÈóÊǶàÉÙÔª£¿£¨ÀûÈó=³ö³§¼Û-³É±¾£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÔÚ-3£¬$\sqrt{2}$£¬-1£¬$\frac{¦Ð}{6}$£¬|-2|Îå¸öÊýÖÐÎÞÀíÊýÓÐ2¸ö£¬¸ºÊýÓÐ2¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸