已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)如图1,将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,D.
①比较大小:PC______PD. (选择“>”或“<”或“=”填空);
②证明①中的结论.
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OA交于点C,且OC=1,另一直角边与直线OB,直线OA分别交于点D,E,当以P,C,E为顶点的三角形与△OCD相似时,试求的长.(提示:请先在备用图中画出相应的图形,再求的长).
(1)①PC=PD;②证明见解析;(2)OP=1或OP=.
【解析】
试题分析:(1)①PC=PD;②过P作PH⊥OA,PN⊥OB,再证△PCH≌△PDN,即可;
(2)分两种情况进行讨论:①若PD与边OB相交;②PD与边OB的反向延长线相交.
试题解析:(1)①PC=PD;
②过P作PH⊥OA,PN⊥OB,垂足分别为H,N,得∠HPN=90°,
∴∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°,
∴∠HPC=∠NPD,
∵OM是∠AOB的平分线,
∴PH=PN.
又∵∠PHC=∠PND=90°
∴△PCH≌△PDN,
∴PC=PD;
(2)①若PD与边OB相交
∵∠PCE>∠DCO,∠CPE=∠DOC=90°
∴由△PCE与△OCD相似可得∠PEC=∠DCO
∴DE=CD,而DO⊥OC,
∴OE=OC=1
∴OP为Rt△CPE斜边上的中线
∴OP=EC=OC=1 ;
②若PD与边OB的反向延长线相交, 过P作PH⊥OA,PN⊥OB,垂足分别为H,N, 则PH=PN
∵△PCE与△DCO相似,且∠PEC>∠OCD,∠CPE=∠DOC=90°
∴∠PCE=∠OCD
又∵∠PCO+∠PEC=90°,∠PDO +∠OED =90°,
且∠PEC=∠OED,∴∠PDO=∠PCO.
而PH=PN,∴Rt△PHC≌Rt△PND(A.A.S).
∴HC=ND,PC=PD, ∴∠PCD= ∠PDC =45°,
∴∠PCO=∠DCO=∠PDO =22.5°
又∠BOM=∠ODP+∠OPD=45°,
∴∠ODP=∠OPD=22.5°
∴OP=OD,
设OP=x,则HC=OC-OH= ,
而DN=DO+ON=OP+ON=? , ∴,??
∴,即OP=,
综上所述,满足条件的OP=1或OP=.
考点:1.相似三角形的判定与性质,2.三角形内角和定理,3.直角三角形全等的判定,4.角平分线的性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| ||
2 |
GD |
OD |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com