A. | 1<m<5 | B. | 1<m<4 | C. | 1<m<3 | D. | 1<m<2 |
分析 设原抛物线的顶点为D,过点D作DE⊥AB于点E交AO于点F.先根据抛物线的解析式求出点B的坐标,再利用对称性求出点A的坐标,再利用二次函数的顶点坐标,根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.
解答 解:如图,设原抛物线的顶点为D,过点D作DE⊥AB于点E交AO于点F.
∵y=-x2-2x+4=-(x+1)2+5,
∴B(0,4),D(-1,5),对称轴为直线x=-1,
∵AB∥x轴交抛物线于点A,
∴A的坐标(-2,4),
∴AB的中点E的坐标是(-1,4),
∵OA的中点是F,
∴F的坐标是(-1,2),
当D点平移到E点时,平移后得到的抛物线顶点不在△OAB的内部,再继续往下平移正好进入△OAB的内部,
当D点平移到F点时,平移后得到的抛物线顶点正好不在△OAB的内部,
∴m的取值范围是:1<m<3.
故选C.
点评 此题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,二次函数的性质,线段中点坐标公式,利用数形结合思想是解题的难点,同学们应重点掌握.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com