精英家教网 > 初中数学 > 题目详情
(2003•三明)已知两圆外公切线的长为l,两圆半径分别为R、r(R≥r),若,则两圆的位置关系为( )
A.外离
B.外切
C.相交
D.内切
【答案】分析:要判断两圆的位置关系,关键是计算出两圆的圆心距.连接AW,SB,WS,作SE⊥AW.根据矩形和直角三角形的性质进行计算;再根据数量关系来判断两圆的位置关系:
外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.(P表示圆心距,R,r分别表示两圆的半径).
解答:解:
如图,圆W的半径为R,圆S的半径为r,外公切线为AB,切点分别为A,B.
连接AW,SB,WS,作SE⊥AW.
由切线的概念知,∠WAB=∠ABS=∠AES=90°.
∴四边形ABSE是矩形,有AB=ES=l,AE=BS=r,EW=AW-AE=R-r,
由勾股定理得,WS2=EW2+ES2=(R-r)2+(22=(R+r)2
即圆心距等于两圆半径的和,
∴两圆外切.
故选B.
点评:本题通过作辅助线,构造矩形和直角三角形,利用勾股定理求解.还利用两圆外切时,圆心距等于两圆半径的和进行判定两圆的位置关系.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(2003•三明)已知y-1与x成正比例,且x=2时,y=5,写出y与x之间的函数关系式;当x=-1时,求y的值;当y=0时,求x的值.

查看答案和解析>>

科目:初中数学 来源:2003年福建省三明市中考数学试卷(解析版) 题型:解答题

(2003•三明)已知y-1与x成正比例,且x=2时,y=5,写出y与x之间的函数关系式;当x=-1时,求y的值;当y=0时,求x的值.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2003•三明)已知:如图,边长为2的正五边形ABCDE内接于⊙O,AB、DC的延长线交于点F,过点E作EG∥CB交BA的延长线于点G.
(1)求证:AB2=AG•BF;
(2)证明:EG与⊙O相切,并求AG、BF的长.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2003•三明)已知:如图,线段AM∥DN,直线l与AM、DN分别交于点B、C,直线l绕BC的中点P旋转(点C由D点向N点方向移动).
(1)线段BC与AD、AB、CD围成的图形,在初始状态下,形状是△ABD(即△ABC),请你写出变化过程中其余的各种特殊四边形名称;
(2)任取变化过程中的两个图形,测量AB、CD长度后分别计算同一个图形的AB+CD(精确到1cm),比较这两个和是否相同,试加以证明.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2003•三明)已知:如图,线段AM∥DN,直线l与AM、DN分别交于点B、C,直线l绕BC的中点P旋转(点C由D点向N点方向移动).
(1)线段BC与AD、AB、CD围成的图形,在初始状态下,形状是△ABD(即△ABC),请你写出变化过程中其余的各种特殊四边形名称;
(2)任取变化过程中的两个图形,测量AB、CD长度后分别计算同一个图形的AB+CD(精确到1cm),比较这两个和是否相同,试加以证明.

查看答案和解析>>

同步练习册答案