精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.

(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)

【答案】
(1)解:直线CD与⊙O相切,

∵在⊙O中,∠COB=2∠CAB=2×30°=60°,

又∵OB=OC,

∴△OBC是正三角形,

∴∠OCB=60°,

又∵∠BCD=30°,

∴∠OCD=60°+30°=90°,

∴OC⊥CD,

又∵OC是半径,

∴直线CD与⊙O相切.


(2)解:由(1)得△OCD是Rt△,∠COB=60°,

∵OC=1,

∴CD=

∴SCOD= OCCD=

又∵S扇形OCB=

∴S阴影=SCOD﹣S扇形OCB=


【解析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=SCOD﹣S扇形OCB求得阴影部分的面积.
【考点精析】本题主要考查了切线的判定定理的相关知识点,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图所示 AD、AE分别是△ABC的中线、高,且AB=5cm,AC=3cm,,△ABD△ACD的周长之差为_________,△ABD△ACD的面积关系为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的周长为38,第一条边长为a,第二条边比第一条边的2倍多3.

(1)表示第三条边;

(2)若三角形为等腰三角形,求a的值;

(3)若a为正整数,此三角形是否为直角三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y= (k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y= (k≠0)上的点D1处,则a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:

(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=2,B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作ADE=40°,DE交线段AC于E.

(1)当BDA=115°时,BAD= °;点D从B向C运动时,BDA逐渐变 (填“大”或“小”);

(2)当DC等于多少时,ABD≌△DCE,请说明理由;

(3)在点D的运动过程中,ADE的形状也在改变,判断当BDA等于多少度时,ADE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC的外角ABP的角平分线,DADCDEBP于点E,若AB=5,BC=3,则BE的长为 _____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)(x﹣1)2=4
(2)x2=3x
(3)2x2﹣x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于点B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.

(1)求a,c的值;
(2)连结OF,试判断△OEF是否为等腰三角形,并说明理由;
(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与△POE全等?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案