分析 (1)连结OD.则OD⊥BC,由△BOD∽△BGF,推出$\frac{{{S_{△BOD}}}}{{{S_{△BGF}}}}=\frac{{B{D^2}}}{{B{F^2}}}=\frac{{\sqrt{3}}}{{{{(2+x)}^2}}}$,即可解决问题.
(2)根据题意列出方程,求出OF的长即可解决问题.
解答 解(1)连结OD.则OD⊥BC.
∵∠B=30°,BD=$\sqrt{3}$,
∴OD=1,BO=2,
∴BE=BO-OE=1,
BF=2+x,
S△BED=$\frac{{\sqrt{3}}}{4}$,
∵∠B=∠B,∠ODB=∠BFG=90°
∴△BOD∽△BGF,
∴$\frac{{{S_{△BOD}}}}{{{S_{△BGF}}}}=\frac{{B{D^2}}}{{B{F^2}}}=\frac{{\sqrt{3}}}{{{{(2+x)}^2}}}$,
∴${S_{△RGF}}=\frac{{\sqrt{3}}}{6}{(2+x)^2}$,
∴$y=\frac{{\sqrt{3}}}{6}{(2+x)^2}-\frac{{\sqrt{3}}}{4}$,
即:$y=\frac{{\sqrt{3}}}{6}{x^2}+\frac{2}{3}\sqrt{3}x+\frac{5}{12}\sqrt{3}$.
(2)由题意:$\frac{{\sqrt{3}}}{6}{(2+x)^2}-\frac{{\sqrt{3}}}{4}=5×\frac{{\sqrt{3}}}{4}$
得:x=1或x=-5(舍)
∴OF=1
∵FG⊥OF
∴FG与⊙O相切.
点评 本题考查切线的性质和判定、相似三角形的判定和性质等知识解题的关键是今天发这些构造相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ±2 | B. | 2 | C. | -2 | D. | ±1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com