精英家教网 > 初中数学 > 题目详情
已知:如图1,直线AB∥CD,EF分别交AB、CD于E、F两点,∠BEF、∠DFE的平分线相交于点K.
(1)求∠EKF的度数.(计算过程不准用三角形内角和)
(2)如图2,∠BEK、∠DFK的平分线相交于点K1,问∠K1与∠K的度数是否存在某种特定的等量关系?写出结论并证明.
(3)在图2中作∠BEK1、∠DFK1的平分线相交于点K2,作∠BEK2、∠DFK2的平分线相交于点K3,依此类推,作∠BEKn、∠DFKn的平分线相交于点Kn+1,请用含的n式子表示∠Kn+1的度数.(直接写出答案,不必写解答过程)
分析:(1)过K作KG∥AB,可得KG∥CD,可得出两对内错角相等,由EK与FK分别为角平平分线,利用角平分线定义得到两对角相等,再由AB与CD平行,利用两直线平行同旁内角互补得到两对角互补,利用等式的性质求出∠BKE+∠DFK的度数,即可求出∠EKF的度数;
(2)∠K=2∠K1,由∠BEK、∠DFK的平分线相交于点K1,利用角平分线定义得到两对角相等,等量代换求出∠K1,进而确定出两角的关系;
(3)依此类推即可确定出∠Kn+1的度数.
解答:
解:(1)过K作KG∥AB,可得KG∥CD,
∴∠BEK=∠EKG,∠GKF=∠KFD,
∵EK、FK分别为∠BEF与∠EFD的平分线,
∴∠BEK=∠FEK,∠EFK=∠DFK,
∵AB∥CD,
∴∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠DFK)=180°,
∴∠BEK+∠DFK=90°,
则∠EKF=∠EKG+∠GKF=90°;
(2)∠K=2∠K1,理由为:
∵∠BEK、∠DFK的平分线相交于点K1
∴∠BEK1=∠KEK1,∠KFK1=∠DFK1
∵∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠KFD)=180°,
∴∠BEK+∠KFD=90°,即∠KEK1+∠KFK1=45°,
∴∠K1=180°-(∠KEF+∠EFK)-(∠KEK1+∠KFK1)=45°,
则∠K=2∠K1
(3)归纳总结得:∠Kn+1=
1
2n+1
×90°.
点评:此题考查了平行线的性质,角平分线定义,属于探究型试题,熟练掌握平行线的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探究规律:
已知,如图1,直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点.若A、B、C为三个定点,P为动点,则
(1)△PAB与△CAB的面积大小关系为
 

(2)请你在图1中再画出一个与△ABC面积相等的△DEF,并说明面积相等的理由.
解决问题:
问题1:如图2,在?ABCD中,点P是CD上任意一点,
则S△PAB
 
S△ADP+S△BCP(填写“>”、“<”或“=”).
问题2:如图3,在公路旁边,有一块矩形的土地ABCD,其内部有一个底面为圆形的建筑物,点O为圆心.若要将土地(不含圆形建筑物所占的面积)平均分给两家承包,且分割线都过公路边(AB)上一点P,请你确定点P的位置,并画出分割线,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,同一直线上有四点B、E、C、F,且∠A=∠D,∠B=∠DEF,BE=CF.
求证:△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,直线y=x+b与x、y轴分别交于点A、B,与双曲线y=
3
x
交于第一象限中的点P,且S△PBO=1,C点与B点关于x轴对称.

(1)求直线AB的解析式;
(2)如图2,N为x轴上一点,过A、P、N的圆与直线AC交于点Q,QM⊥x轴于M,求MN;
(3)如图3,D为线段AO上一动点,连BD,将线段BD绕点D顺时针旋转90°,B点的对应点为E,直线CE与x轴交于点F,则
DF-DA
EF
的值是否为定值?若是定值,请求出其值;若不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,直线y=
1
3
x
与双曲线y=
k
x
交于A,B两点,且点A的坐标为(6,m).
(1)求双曲线y=
k
x
的解析式;
(2)点C(n,4)在双曲线y=
k
x
上,求△AOC的面积;
(3)过原点O作另一条直线l与双曲线y=
k
x
交于P,Q两点,且点P在第一象限.若由点A,P,B,Q为顶点组成的四边形的面积为20,请直接写出所有符合条件的点P的坐标.

查看答案和解析>>

同步练习册答案