精英家教网 > 初中数学 > 题目详情
15.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于$\frac{1}{2}$AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是(  )
A.AD=CDB.∠A=∠DCEC.∠ADE=∠DCBD.∠A=2∠DCB

分析 根据题意可知DE是AC的垂直平分线,由此即可一一判断.

解答 解:∵DE是AC的垂直平分线,
∴DA=DC,AE=EC,故A正确,
∴DE∥BC,∠A=∠DCE,故B正确,
∴∠ADE=∠CDE=∠DCB,故C正确,
故选D.

点评 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知抛物线C1的函数解析式为y=ax2+bx-3a(b<0),若抛物线C1经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.
(1)求抛物线C1的顶点坐标.
(2)已知实数x>0,请证明:x+$\frac{1}{x}$≥2,并说明x为何值时才会有x+$\frac{1}{x}$=2.
(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含有m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.一位同学在钻研数学题时发现
2+1=3,
2×3+1=7,
2×3×5+1=31,
2×3×5×7+1=211.
于是,他根据上面的结果并利用质数表得出结论:从质数2开始,排在前面的任意多个质数的乘积加1一定也是质数.他的结论正确吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:(a-1)m+(|a|-1)m2-4a=0是关于m的一元一次方程.求
(1)a及m的值;
(2)当k取什么正整数时,关于x的方程mkx=kx+mx-2a的解是负数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:
(1)AB=BC=CD=AD;
(2)AC⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若$\sqrt{x}$=$\sqrt{a}$-$\frac{2}{\sqrt{a}}$(a>0),则$\frac{x+4+\sqrt{{x}^{2}+8x}}{x+4-\sqrt{{x}^{2}+8x}}$=$\frac{{a}^{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知一次函数y=k(x+5)和反比例函数y=$\frac{6}{x}$的图象都经过点P(3,m).
(1)求k的值以及两函数图象交点的坐标.
(2)平行于x轴的直线y=a(a≠0)与这个一次函数的图象相交于点A,与这个反比例函数的图象相交于点B,且PA=PB.求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,直线y=$\frac{1}{2}$x与双曲线y=$\frac{k}{x}$(k>0,x>0)交于点A,将直线y=$\frac{1}{2}$x向上平移3个单位长度后,与y轴交于点C,与双曲线y=$\frac{k}{x}$(k>0,x>0)交于点B,若OA=3BC,则k的值为$\frac{81}{32}$.

查看答案和解析>>

同步练习册答案