精英家教网 > 初中数学 > 题目详情
某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.
解:在Rt△ADB中,∵∠BDA=45°,AB=3米,∴DA=3米。
在Rt△ADC中,∠CDA=60°,∵tan60°=,∴CA=3
∴BC=CA﹣BA=(3﹣3)。
答:路况显示牌BC是(3﹣3)米。
在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;从而由BC=AC﹣AB得解。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=

(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,P是∠α的边OA上一点,点P的坐标为(12,5),则∠α的正弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,图1是某仓库的实物图片,图2是该仓库屋顶(虚线部分)的正面示意图,BE、CF关于AD轴对称,且AD、BE、CF都与EF垂直,AD=3米,在B点测得A点的仰角为30°,在E点测得D点的仰角为20°,EF=6米,求BE的长.
(结果精确到0.1米,参考数据:

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【   】
A.cmB.cmC.cmD.cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△中,,如果,那么    

查看答案和解析>>

同步练习册答案