精英家教网 > 初中数学 > 题目详情

【题目】如图,点EF在菱形ABCD的对边上,AEBC.∠1=∠2

1)判断四边形AECF的形状,并证明你的结论.

2)若AE4AF2,试求菱形ABCD的面积.

【答案】四边形AECF是矩形,理由见解析;(2)菱形ABCD的面积=20.

【解析】

1)由菱形的性质可得AD=BCADBC,∠BAD=BCD,由∠1=2可得∠EAF=FCB=90°=AEC,可得四边形AECF是矩形;
2)由勾股定理可求AB的值,由菱形的面积公式可求解.

解:(1)四边形AECF是矩形
理由如下:
∵四边形ABCD是菱形
AD=BC=ABADBC,∠BAD=BCD
AEBC
AEAD
∴∠FAE=AEC=90°
∵∠1=2
∴∠BAD-1=BCD-2
∴∠EAF=FCB=90°=AEC
∴四边形AECF是矩形
2)∵四边形AECF是矩形
AF=EC=2
RtABE中,AB2=AE2+BE2
AB2=16+AB-22
AB=5
∴菱形ABCD的面积=5×4=20

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B.

(1)求直线AB的解析式;

(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中如图所示,

1SABC 

2x轴上是否存在点P,使得SBCP2SABC,若不存在,说明理由;若存在,求出P点的坐标.

3)请直接写出:以ABC为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,ADAE在同一条直线上,ABAG在同一条直线上.

(1)小明发现DG=BEDGBE,请你给出证明.

(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明过程:

如图,ABCDADBCBE平分∠ABCDF平分∠ADC

求证:BEDF

证明:∵ABCD,(已知)

∴∠ABC+∠C180°.(   

又∵ADBC,(已知)

   +∠C180°.(   

∴∠ABC=∠ADC.(   

BE平分∠ABC,(已知)

∴∠1ABC.(   

同理,∠2ADC

   =∠2

ADBC,(已知)

∴∠2=∠3.(   

∴∠1=∠3

BEDF.(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过点A60)的直线ykx3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.

1)求点B的坐标;

2)当△OPB是直角三角形时,求点P运动的时间;

3)当BP平分△OAB的面积时,直线BPy轴交于点D,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=2,直线MNy=x4沿x轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为tmt的函数图象如图2所示.

1)点A的坐标为  ,矩形ABCD的面积为  

2)求ab的值;

3)在平移过程中,求直线MN扫过矩形ABCD的面积St的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知 a b a b 两个数在数轴上对应的点分别为点 A 、点 B ,求 A B 两点之间的距离.

(探索)

小明利用绝对值的概念,结合数轴,进行探索:

1)补全小明的探索

(应用)

2)若点C 对应的数c ,数轴上点C AB 两点的距离相等,求c .(用含ab 的代数式表示)

3)若点 D对应的数 d ,数轴上点 D A 的距离是点 D B 的距离的nn 0 倍,请探索 n 的取值范围与点 D 个数的关系,并直接写出ab dn 的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

同步练习册答案