【题目】如图,△ABC中,AB=AC,∠BAC=45°,BC=2,D是线段BC上的一个动点,点D是关于直线AB、AC的对称点分别为M、N,则线段MN长的最小值是 .
【答案】
【解析】解:如图,连接AM,AN,AD,
∵点D是关于直线AB、AC的对称点分别为M、N,
∴AM=AD=AN,
∴∠MAB=∠DAB,∠NAC=∠DAC,
∵∠BAC=45°,
∴∠MAN=90°,
∴△MAN是等腰直角三角形,
∴MN= AM,
∴当AM取最小值时,MN最小,
即AD取最小值时,MN最小,
∴当AD⊥BC时,AD最小,
过B作BH⊥AC于H,
∴AH=BH= AB,
∴CH=(1﹣ )AB,
∵BH2+CH2=BC2,
∴( AB)2+[(1﹣ )AB]2=4,
∴AB2=4+2 ,
∴AD= ,
∴MN= ,
∴线段MN长的最小值是 .
【考点精析】认真审题,首先需要了解轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径).
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)从出发几秒钟后,△PQB能形成等腰三角形?
(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为( )
A.150°
B.130°
C.120°
D.100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请从以下两个小题中任选一题作答,若多选,则按所选的第一题计分.
A.正五边形的一个外角的度数是 .
B.比较大小:2tan71° (填“>”、“=”或“<”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(a,b)、B(c,d)、C(7,0),且
(1)如果a1,d2,
①求A,B两点的坐标;
②求线段AB与y轴交点N的坐标,并求出△AOB的面积;
(2)如果b1,且△AOB与△ABC面积和为9,求a的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用1200元购进一批服装,全部售完.由于服装畅销,服装店又用2800元,购进了第二批这种服装,所购数量是第一批购进量的2倍,但单价贵了5元,仍以同样的价格出售.卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的八折全部出售.
问:(1)该服装店第一次购买了此种服装多少件?
(2)如果两批服装全部售完利润率不低于16%(不考虑其它因素),那么每件服装的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们已经知道,有一个内角是直角的三角形是直角三角形.其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家已发现在一个直角三角形中,两个直角边边长的平方和等于斜边长的平方.如果设直角三角形的两条直角边长度分别是和,斜边长度是,那么可以用数学语言表达:.
(1)在图②,若,,则 ;
(2)观察图②,利用面积与代数恒等式的关系,试说明的正确性.其中两个相同的直角三角形边AE、EB在一条直线上;
(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com