精英家教网 > 初中数学 > 题目详情
(1)观察发现如题(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P 再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小. 做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为       .  

(2)实践运用
如题(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法. 
(1)(1)首先由等边三角形的性质知,CE⊥AB,在直角△BCE中,∠BEC=90°BC=2,BE=1,由勾股定理可求出CE的长度,从而得出结果,BP+PE的最小值为

(2)如上图作点B关于CD的对称点E,则点E正好在圆周上,连接AE交CD与一点P,则AP+BP最短。连接OA、OB、OE,
∵∠AOD=60°,B是弧AD的中点,∴∠AOB=∠DOB=30°,
∵B关于CD的对称点E,∴∠DOE=∠DOB=30°,∴∠AOE=90°,
又∵OA=OE=2,∴△OAE为等腰直角三角形,∴AE=.
(3)找B关于AC对称点E,连DE延长交AC于P即可,如下图分
解析:
(1)首先由等边三角形的性质知,CE⊥AB,在直角△BCE中,∠BEC=90°BC=2,BE=1,由勾股定理可求出CE的长度,从而得出结果;
(2)要在直径CD上找一点P,使PA+PB的值最小,设A′是A关于CD的对称点,连接A′B,与CD的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.
(3)画点B关于AC的对称点B′,延长DB′交AC于点P.则点P即为所求
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

 

1.观察发现

    如题27(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

  再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

点就是所求的点P,故BP+PE的最小值为       

2.实践运用

如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察发现

    如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

    做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

  点就是所求的点P,故BP+PE的最小值为        .  

         

题26(a)图                    题26(b)图               

(2)实践运用

    如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

      

题26(c)图                       题26(d)图

 (3)拓展延伸

    如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察发现
如题26(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如题26(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这
点就是所求的点P,故BP+PE的最小值为       .  
         
题26(a)图                    题26(b)图               
(2)实践运用
如题26(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
      
题26(c)图                       题26(d)图
(3)拓展延伸
如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法.

查看答案和解析>>

科目:初中数学 来源:2012届江西省南昌市九年级下学期4月考数学卷(带解析) 题型:解答题

(1)观察发现如题(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P 再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小. 做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为       .  

(2)实践运用
如题(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法. 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江西省南昌市九年级下学期第二次联考数学试卷(解析版) 题型:解答题

 

1.观察发现

    如题27(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

   再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

点就是所求的点P,故BP+PE的最小值为       

2.实践运用

如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

同步练习册答案