分析 (1)由在⊙O中,直径AB交弦CD于点G,CG=DG,根据垂径定理即可得AB⊥CD,又由BE是⊙O的切线,易证得CD∥BE,即可证得结论;
(2)易证得△ODG∽△OEB,然后由相似三角形的对应边成比例,求得OG的长,由勾股定理即可求得DG的长,继而求得答案.
解答 (1)证明:∵在⊙O中,直径AB交弦CD于点G,CG=DG,
∴AB⊥CD,
∵BE是⊙O的切线,
∴AB⊥BE,
∴CD∥BE,
∴∠CDE=∠E;
(2)解:∵∠CDE=∠E,∠DOG=∠BOE,
∴△ODG∽△OEB,
∴$\frac{OG}{OB}=\frac{OD}{OE}$,
∵OD=4,EF=1,
∴OB=OF=OD=4,
∴OE=OF+EF=5,
∴$\frac{OG}{4}=\frac{4}{5}$,
∴OG=$\frac{16}{5}$,
∴DG=$\sqrt{O{D}^{2}-O{G}^{2}}$=$\frac{12}{5}$,
∴CD=2DG=$\frac{24}{5}$.
点评 此题考查了切线的性质、垂径定理以及相似三角形的判定与性质.注意证得△ODG∽△OEB是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$π | B. | $\frac{\sqrt{3}}{2}$π | C. | π | D. | 无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com