精英家教网 > 初中数学 > 题目详情
已知:矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4),其中m≠0.
(1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示);
(2)若一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示);
(3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P点的坐标.
分析:(1)由图象可以写出C点的坐标,P为矩形的中心,由中点坐标公式可以写出P点坐标.(2)设出函数解析式,因为一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,故直线经过中心,把中心坐标代入,解出函数解析式.(3)在(2)的条件下,又增加了一条件,求出m.
解答:精英家教网解:(1)C点坐标为(m,4)
P点坐标为(
m
2
,2).

(2)∵直线L把矩形ABCD分成面积相等的两部分.
∴L必过中心点P(
m
2
,2),
∴4=km-2,
∵m≠0,∴k=
6
m

∴y=
6
m
x-1


(3)设直线l与y轴相交于点F,
∴F点坐标为(0,-1),
∵⊙m的半径为1,
∴sin∠EFD=
ME
MF
=
1
2

∴∠EFD=30°.
过P作PH⊥y轴于H
PH
FH
=tan∠EFD=tan30°=
3
3

∴PH=
3
3
FH=
3

|
m
2
|=
3

∴p点坐标(±
3
,2).
点评:本题主要考查一次函数的应用,熟悉一次函数的解析式的求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:矩形ABCD(字母顺序如图)的边长AB=3,AD=2,将此矩形放在平面直角坐标系xOy中,使AB在x轴正半轴上,而矩形的其它两个顶点在第一象限,且直线y=
3
2
x-1经过这两个顶点中的一个.
(1)求出矩形的顶点A、B、C、D的坐标;
(2)以AB为直径作⊙M,经过A、B两点的抛物线,y=ax2+bx+c的顶点是P点.
①若点P位于⊙M外侧且在矩形ABCD内部,求a的取值范围;
②过点C作⊙M的切线交AD于F点,当PF∥AB时,试判断抛物线与y轴的交点Q是位于直线y=
3
2
x-1的上方?还是下方?还是正好落在此直线上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4),其中m≠0.
(1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示);
(2)若一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示);
(3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•福州)已知:矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4),其中m≠0.
(1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示);
(2)若一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示);
(3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年福建省福州市中考数学试卷(解析版) 题型:解答题

(2002•福州)已知:矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4),其中m≠0.
(1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示);
(2)若一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示);
(3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P点的坐标.

查看答案和解析>>

同步练习册答案