【题目】如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.
(1)求轮船M到海岸线l的距离;(结果精确到0.01米)
(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.
(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.732.)
【答案】(1)167.79;(2)能.理由见解析.
【解析】
(1)过点M作MD⊥AC交AC的延长线于D,设DM=x.由三角函数表示出CD和AD的长,然后列出方程,解方程即可;
(2)作∠DMF=30°,交l于点F.利用解直角三角形求出DF的长度,然后得到AF的长度,与AB进行比较,即可得到答案.
解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x.
∵在Rt△CDM中,CD = DM·tan∠CMD= x·tan22°,
又∵在Rt△ADM中,∠MAC=45°,
∴AD=DM=x,
∵AD=AC+CD=100+ x·tan22°,
∴100+ x·tan22°=x.
∴(米).
答:轮船M到海岸线l的距离约为167.79米.
(2)作∠DMF=30°,交l于点F.
在Rt△DMF中,有:
DF= DM·tan∠FMD= DM·tan30°=DM≈≈96.87米.
∴AF=AC+CD+DF=DM+DF≈167.79+96.87=264.66<300.
∴该轮船能行至码头靠岸.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:
(1)画出关于轴对称的,点的坐标为______;
(2)在网格内以点为位似中心,把按相似比放大,得到,请画出;若边上任意一点的坐标为,则两次变换后对应点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.
(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;
(2)若PE⊥EC,如图②,求证:AEAB=DEAP;
(3)在(2)的条件下,若AB=1,BC=2,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y1=与一次函数y2=ax+b的图象交于点A(﹣2,5)和点B(n,l).
(1)求反比例函数和一次函数的表达式;
(2)请结合图象直接写出当y1≥y2时自变量x的取值范围;
(3)点P是y轴上的一个动点,若S△APB=8,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:为的直径,,为上一动点(不与、重合).
(1)如图1,若平分,连接交于点.①求证:;②若,求的长;
(2)如图2,若绕点顺时针旋转得,连接.求证:为的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(2,2),点P在直线y=﹣x上运动,∠PAB=90°,∠APB=30°,在点P运动的过程中OB的最小值为( )
A.3.5B.2C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器零刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒4度的速度旋转,CP与量角器的半圆弧交于点E,第18秒时,点E在量角器上对应的读数是__________度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com