精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=16cm2,S△EFC=49cm2求①,②S△ABC

【答案】(1);(2)121

【解析】

利用平行求相似三角形,再根据相似三角形的性质,对应求解.

DE∥BC,EF∥AB;

∴∠ADE=∠ABC, ∠AED=∠ACF;∴ΔADE∽ΔABC;

∠ABC=∠EFC, ∠EFC=∠ADE;∴ΔADE∽ΔEFC;

S△ADE:S△EFC =(BC:EF) =16:49, BC:EF=4:7;

DE∥BC,EF∥AB;

四边形DEFB为平行四边形,DE=BF;

= .

②∵ΔADE∽ΔABC,=

S△ADES△ABC=(4:11)=16:121;

S△ADE=16cm2

S△ABC E=121 cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠AOB′=∠AOB的依据是全等三角形的_____相等.其全等的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)已知∠MAN=135°,正方形ABCD绕点A旋转.

1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AMAN分别与正方形ABCD的边CBCD的延长线交于点MN,连接MN

如图1,若BM=DN,则线段MNBM+DN之间的数量关系是

如图2,若BM≠DN,请判断中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;

2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AMAN分别与直线BD交于点MN,探究:以线段BMMNDN的长度为三边长的三角形是何种三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:在正方形ABCD的外侧,作△ADE△DCF,连结AFBE.特例探究:如图,若△ADE△DCF均为等边三角形,试判断线段AFBE的数量关系和位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知ABC中,ABAC10BC8,点DAB中点,点P在线段BC上以每秒3个单位长度的速度由点B向点C运动,同时点Q在线段CA上由点C向点A以每秒a个单位长度的速度运动.设运动的时间为t秒.

1)求CP的长(用含t的式子表示);

2)若以点CPQ为顶点的三角形和以点BDP为顶点的三角形全等,并且∠B和∠C是对应角,求at的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+bx+cx轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),直线y=kx﹣3经过B、C两点.

(1)求k的值既抛物线的函数表达式;

(2)如果P是线段BC上一点,设△ABP、APC的面积分别为SABP、SAPC,且SABP:SAPC=2:3,求点P的坐标;

(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙O与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由,并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐标轴同时相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)已知直线与抛物线相交于抛物线的顶点和另一点,点在第四象限.

若点,点的横坐标为,求点的坐标;

过点轴的平行线与抛物线的对称轴交于点,直线轴交于点,若,求的面积的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长方形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图2);再展平纸片(如图3),则图3中∠α的大小为()

A.30°B.25.5°C.20°D.22.5°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠ABC90°AB4BC3CD12AD13.求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案