精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(40),y轴上有点B03),点C是⊙A上的动点,点PBC的中点,则OP的范围是(  )

A.B.2≤OP≤4C.≤OP≤D.3≤OP≤4

【答案】A

【解析】

如图,在y轴上取点B'0,﹣3),连接B'CB'A,由勾股定理可求B'A5,由三角形中位线定理可求B'C2OP,当点C在线段B'A上时,B'C的长度最小值=523,当点C在线段B'A的延长线上时,B'C的长度最大值=5+27,即可求解.

解:如图,在y轴上取点B'0,﹣3),连接B'CB'A

∵点B03),B'0,﹣3),点A40),

OBOB'3OA4

∵点PBC的中点,

BPPC

OBOB'BPPC

B'C2OP

当点C在线段B'A上时,B'C的长度最小值=523

当点C在线段B'A的延长线上时,B'C的长度最大值=5+27

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直

线交菱形ABCD的边于MN两点.设AC2BD1APxAMN的面积为y,则

y关于x的函数图象大致形状是【 】

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商店以5/千克的价格购进一批水果进行销售,运输过程中质量耗5%,运输费用是0.7/千克,假设不计其他费用

1)商店要把水果售完至少定价为多少元才不会亏本?

2)在销售过科中,商店发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?

3)该商店决定每销售一千克水果就捐赠a元利润(a≥1)给希望工程,通过销售记录发现,销侮价格大于每千克11元时,扣除捐赠后每天的利润随x增大而减小,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在等腰△ABC中,ABAC10cmBC16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为ts)(0t10),解答下列问题:

1)当t为何值时,△BDE的面积为7.5cm2

2)在点DE的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,AB6BC4,点E在边AB上(不与点AB重合),过点DDFDE,交边BC的延长线于点F

1)求证:DAE∽△DCF

2)设线段AE的长为x,线段BF的长为y,求yx之间的函数关系式.

3)当四边形EBFD为轴对称图形时,则cosAED的值为 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是(  )

A. (60+2x)(40+2x)=2816

B. (60+x)(40+x)=2816

C. (60+2x)(40+x)=2816

D. (60+x)(40+2x)=2816

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图1,抛物线yax2+bx3x轴交于A(﹣20),B40)两点,与y轴交于点C

1)求抛物线的表达式;

2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;

3)如图2,当POB的中点时,过点PPDx轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0m2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求Sm的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是定长线段,圆心OAB的中点,AEBF为切线,EF为切点,满足AE=BF上取动点G,过点G作切线交AEBF的延长线于点DC,当点G运动时,设AD=yBC=x,则yx所满足的函数关系式为(  )

A.正比例函数y=kxk为常数,k≠0x0B.一次函数y=kx+bkb为常数,kb≠0x0

C.二次函数y=ax2+bx+cabc为常数,a≠0x0D.以上都不是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_____

查看答案和解析>>

同步练习册答案