【题目】成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶处测得塔处的仰角为45°,塔底部处的俯角为22°.已知建筑物的高约为61米,请计算观景台的高的值.
(结果精确到1米;参考数据:,,)
【答案】观景台的高约为214米.
【解析】
过点D作DM⊥AB于点M,由题意可得四边形DCBM是矩形,由矩形的性质可得BM=CD=61米;在Rt△BDM中,∠BDM=22°,BM=61米,由此可得tan22°=,即可求得DM=152.5米;再证明△ADM为等腰直角三角形,可得DM=AM=152.5米,由此即可求得观景台的高的长.
过点D作DM⊥AB于点M,由题意可得四边形DCBM是矩形,
∴BM=CD=61米,
在Rt△BDM中,∠BDM=22°,BM=61米, tan∠BDM=,
∴tan22°=,
解得,DM=152.5米;
∵∠ADM=45°,DM⊥AB,
∴△ADM为等腰直角三角形,
∴DM=AM=152.5米,
∴AB=BM+AM=61+152.5=213.5≈214(米).
答:观景台的高约为214米.
科目:初中数学 来源: 题型:
【题目】如图所示,AB⊥AD于点A,CD⊥AD于点D,∠C=120°.若线段BC与CD的和为12,则四边形ABCD的面积可能是( )
A.24B.30C.45D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是正方形ABCD的对角线,BC=4,边BC在其所在的直线上平移,平移后得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?
(2)请判断OA、OP之间的数量关系和位置关系,并利用图1加以证明.
(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤4),求y与x之间的函数关系式,并求出y的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业接到加工粮食任务,要求天加工完吨粮食.该企业安排甲、乙两车间共同完成加工任务.乙车间因维修设备,中途停工一段时间,维修设备后提高了加工效率,继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工粮食数量(吨)与甲车间加工时间(天)之间的函数关系如图①所示;未加工粮食(吨)与甲车间加工时间(天)之间的函数关系如图②所示、请结合图象解答下列问题:
(1)甲车间每天加工粮食 吨, ;
(2)求乙车间维修设备后,乙车间加工粮食数量与之间的函数关系式;
(3)求加工吨粮食需要几天完成.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC得延长线于点E,延长线ED交AB得延长线于点F.
(1)判断直线EF与⊙O的位置关系,并证明.
(2)若DF=,求tan∠EAD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量(单位:件)与线下售价(单位:元/件,)满足一次函数的关系,部分数据如下表:
(1)求与的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是△ABC中AB边上一点,以点O为圆心,OA的长为半径作⊙O,⊙O恰好经过点C,且与边BC,AB分别交于E,F两点.连接AE,过点E作⊙O的切线,交线段BF于点M,交AC的延长线于点N,且EM=BM,EB=AO.
(1)求的度数;
(2)求证:;
(3)若,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:对于已知的两个函数,任取自变量的一个值,当时,它们对应的函数值相等;当时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数,它的相关函数为.
(1)已知点在一次函数的相关函数的图像上,求的值;
(2)已知二次函数.
①当点在这个函数的相关函数的图像上时,求的值;
②当时,求函数的相关函数的最大值和最小值.
(3)在平面直角坐标系中,点、的坐标分别为、,连结.直接写出线段与二次函数的相关函数的图像有两个公共点时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是射线BC上的一定点,点P是线段AB上一动点,连接PD,作BQ垂直PD,交直线PD于点Q.小腾根据学习函数的经验,对线段PB,PD,BQ的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:
(1)对于点P在AB上的不同位置,画图、测量,得到了线段PB,PD,BQ的长度的几组值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
BP/cm | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PD/cm | 2.00 | 1.22 | 0.98 | 1.56 | 2.43 | 3.38 | 4.35 |
BQ/cm | 0.00 | 0.78 | 1.94 | 1.82 | 1.56 | 1.41 | 1.31 |
在PB,PD,BQ的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当PD>BQ时,PB长度范围是 cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com