精英家教网 > 初中数学 > 题目详情
精英家教网在Rt△ABC中,∠ACB=90°,AB=5,sin∠CAB=
4
5
,D是斜边AB上一点,过点A作AE⊥CD,垂足为E,AE交直线BC于点F.
(1)当tan∠BCD=
1
2
时,求线段BF的长;
(2)当点F在边BC上时,设AD=x,BF=y,求y关于x的函数解析式,及其定义域;
(3)当BF=
5
4
时,求线段AD的长.
分析:(1)由题意先求出AC,BC的长,由AE⊥CD和∠ACB=90°,证明出∠CAF=∠BCD,再由tan∠BCD=
1
2
,可知tan∠CAF=tan∠BCD=
1
2
,求得CF,从而求得线段BF的长;
(2)通过分析,作辅助线,过点B作BG∥AC,交CD延长线于点G,根据平行线的性质得:
BG
AC
=
BD
AD
,再由(1)得
BG
BC
=
CF
AC
,根据以上两个式子求出y关于x的函数解析式,
(3)分两种情况:①当点F在线段BC上时,②当点F在CB延长线上时,求得线段AD的长为
9
4
3
2
解答:解:(1)在△ABC中,∠ACB=90°,AB=5,sin∠CAB=
4
5

∴BC=4,AC=3,(1分)
∵AE⊥CD,∠ACB=90°,
∴∠BCD+∠AFC=90°,∠AFC+∠CAF=90°,
∴∠CAF=∠BCD(2分)
tan∠CAF=tan∠BCD=
1
2

又∵∠ACB=90°,AC=3,
∴CF=
3
2
,BF=
5
2
(1分)

(2)过点B作BG∥AC,交CD延长线于点G,(1分)
精英家教网
BG
AC
=
BD
AD
,即
BG
3
=
(5-x)
x
①(1分)
在Rt△ACF与Rt△CBG中,
由(1)得tan∠CAF=tan∠BCD,
精英家教网
BG
BC
=
CF
AC
,即
BG
4
=
(4-y)
3
,②(1分)
由①②得
4(4-y)
3
=
3(5-x)
x
y=
25x-45
4x
=
25
4
-
45
4x
(
9
5
≤x≤5)
(2分)

(3)1°当点F在线段BC上时,
y=
5
4
代入y=
25
4
-
45
4x
解得x=
9
4
,(2分)
2°当点F在CB延长线上时,
设AD=x,由(2)同理可得
4(4+
5
4
)
3
=
3(5-x)
x
,解得x=
3
2
(2分)
综上所述当BF=
5
4
时,线段AD的长为
9
4
3
2
(1分)
点评:本题主要考查了三角函数的应用,用到了分类讨论的思想,是一道综合题难度大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案