精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点.
(1)求该抛物线的表达式;
(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.

解:(1)设该抛物线的表达式为y=ax2+bx+c根据题意,
得:
解之得
∴所求抛物线的表达式为y=x2-x-1;

(2)①AB为边时,只要PQ∥AB且PQ=AB=4即可.
又知点Q在y轴上,
∴点P的横坐标为4或-4,这时符合条件的点P有两个,分别记为P1,P2
而当x=4时,y=
当x=-4时,y=7,
此时P1(4,)、P2(-4,7).
②当AB为对角线时,只要线段PQ与线段AB互相平分即可,
又知点Q在y轴上,Q点横坐标为0,且线段AB中点的横坐标为1,
∴点P的横坐标为2,这时符合条件的P只有一个记为P3
而且当x=2时y=-1,此时P3(2,-1),
综上,满足条件的P为P1(4,)、P2(-4,7)、P3(2,-1).
分析:(1)设出抛物线的表达式为y=ax2+bx+c,由于抛物线经过A(-1,0),B(3,0),C(0,-1)三点,把三点代入表达式,联立解方程组,求出a、b、c.
(2)要分类讨论AB是边还是对角线两种情况,AB为边时,只要PQ∥AB且PQ=AB=4即可,进而求出P点坐标,当AB为对角线时,只要线段PQ与线段AB互相平分即可,进而求出P点坐标.
点评:此题主要考查了二次函数的综合题,涉及到二次函数解析式的确定,分类讨论的思想,此题不是很难,但是做题时要考虑周全.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案