精英家教网 > 初中数学 > 题目详情
19.计算:(2a-b)2=4a2-4ab+b2

分析 原式利用完全平方公式展开即可得到结果.

解答 解:原式=4a2-4ab+b2
故答案为:4a2-4ab+b2

点评 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.已知x=-2是关于x的方程x2-2ax+a2=0的一个根,则a的值为-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2-4a+4=0,则a=2.b=0.
(2)已知x2+2y2-2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,线段AB⊥BC于点B,CD⊥BC于点C,连结AD,点E是AD的中点,连结BE并延长交CD于F点.
(1)请说明△ABE≌△DFE的理由;
(2)连结CE,若CE⊥AD,DE=2CE,CD=$\sqrt{5}$,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:x3+3=-$\frac{3}{8}$,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知直线y=$\frac{1}{2}$x-2与x轴交于点B,与y轴交于点C,抛物线y=$\frac{1}{2}$x2+bx-2与x轴交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)点M是上述抛物线上一点,如果△ABM和△ABC相似,求点M的坐标;
(3)连接AC,求顶点D、E、F、G在△ABC各边上的矩形DEFG面积最大时,写出该矩形在AB边上的顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算
(1)a(1-a)+(a+1)2-1
(2)(2y-z)2-(z+2y)(2y-z)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在△ABC中,DE∥BC,若AD=2,DB=4,则$\frac{DE}{BC}$的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图是由边长为1的小正方形组成的网格,△ABC的顶点A,B,C均在格点上,BD⊥AC于点D,则BD的长为(  )
A.$\frac{12}{5}$B.$\frac{24}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步练习册答案