精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-2mx+m-1的图象经过原点,与x轴的另一个交点为A,抛物线的顶点为B,则△OAB的面积为
 
分析:将(0,0)代入解析式y=x2-2mx+m-1,求出m的值,得到二次函数解析式,求出A的坐标和B的坐标,进而求出△OAB的面积.
解答:解:将(0,0)代入解析式y=x2-2mx+m-1得,
m=1,
故函数解析式为:y=x2-2x,
令y=0,得x2-2x=0,
解得x1=0,x2=2.
顶点坐标为(1,-1).
S△OAB=
1
2
×2×1=1.
故答案为:1.
点评:此题考查了求抛物线与x轴的交点坐标、待定系数法求函数解析式、顶点坐标的求法等知识,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案