精英家教网 > 初中数学 > 题目详情

【题目】如图:ABC的内切圆O与边BC切于点D,若∠BOC=135°BD=3CD=2,则ABC的面积为=______

【答案】6.

【解析】

首先根据内心的性质得出∠A=90°,再利用勾股定理和切线长定理得出AE的长,进而得出ABC的面积.

∵△ABC的内切圆O与边BC切于点D,∠BOC=135°

∴∠OBC+OCB=45°,∠ABO=OBC,∠ACO=BCOAE=AFBE=BDCD=FC

∴∠ABC+ACB=90°

∴∠A=90°

AB2+AC2=BC2

BD=3CD=2

∴(3+AE2+AE+22=52

解得:AE=1

AB=4AC=3

∴△ABC的面积为:×AC×AB=×4×3=6

故答案为:6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,点A40)是抛物线y=ax2+2x-c上的一点,将此抛物线向下平移6个单位后经过点B02),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P

1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;

2)求∠CAB的正切值;

3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为线段OA表示货车离甲地的距离xh的函数图象;折线BCDE表示汽车距离甲地的距离的函数图象.

求线段OA与线段CD所表示的函数表达式;

OACD相交于点F,求点F的坐标,并解释点F的实际意义;

x为何值时,两车相距100千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲地到乙地的火车原来的平均速度是100千米每小时,经过两次提速后平均速度为121千米每小时,这两次提速的百分率相同.

1)求该火车每次提速的百分率;

2)若甲乙两地铁路长220千米,求第一次提速后从甲地到乙地所用的时间比提速前少用了多少小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个求助没有用(使用求助可以让主持人去掉其中一题的一个错误选项).

(1)如果小明第一题不使用求助,那么小明答对第一道题的概率是  

(2)如果小明将求助留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

(3)从概率的角度分析,你建议小明在第几题使用求助.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.

1)若油面宽AB=16dm,求油的最大深度.

2)在(1)的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,ABCD中,若AB=1,BC=2,则ABCD1阶准菱形.

(1)猜想与计算:

邻边长分别为35的平行四边形是_______阶准菱形;已知ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出ABCD___________阶准菱形

(2)操作与推理:

小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点EAD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图和图,请根据图中提供的信息,回答下列问题:

(I)本次随机抽样调查的学生人数为   ,图中的m的值为   

(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;

(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).

(1)如图1,若EFBC,求证:

(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;

(3)如图3,若EF上一点G恰为ABC的重心,,求的值.

查看答案和解析>>

同步练习册答案