精英家教网 > 初中数学 > 题目详情
现有一个长为2米的长方形铁片,要把它制成一个开口的水槽.
(1)方案甲,如果做成一个底边长为1米,两边高都为0.5米开口长方形水槽,求水槽的横截面面积.
(2)方案乙,如图把铁片制成等腰梯形水槽,使∠ABC=∠BCD=120°.设BC=2xcm,梯形ABCD(水槽的横截面)的面积为ycm2,试写出y关于x的函数关系式以及自变量x的取值范围,并求出y的最大值;
(3)你能找到一种使水槽的横截面面积比方案乙中的y更大的设计方案吗?若能,请画出图形,标出必要的数据(可不写解答过程),写出你所设计方案的横截面面积;若不能,请说明理由.
(1)S=1×0.5=0.5m2

(2)AB=CD=
200-2x
2
=100-x

梯形ABCD的高为h=
3
2
(100-x)
.y=-
3
3
4
(x-
100
3
)2+
10000
3
3

故当x=
100
3
时,即AB=BC=CD=
200
3
时,
水槽的横截面积y的最大值为
10000
3
3
cm2


(3)能,可增加多边形边数,或设计为半圆.
设计成半圆弧最佳,此时水槽的横截面积最大,
最大面积为:
1
2
π(
200
π
)2
6369.43cm2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC=4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)
(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;
(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OMAB,过点A作ADx轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.
(1)求抛物线的解析式(关系式);
(2)求点A,B所在的直线的解析式(关系式);
(3)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,四边形ABOP分别为平行四边形?等腰梯形?
(4)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=-x2+bx+c的图象如图所示,则此抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2口口少•荆门)9开4向上4抛物线与x轴交于g(m-2,口),B(m+2,口)两点,记抛物线顶点为C,且gC⊥BC.
(你)若m为常数,求抛物线4解析式;
(2)若m为小于口4常数,那么(你)中4抛物线经过怎么样4平移可以使顶点在坐标原点;
(右)设抛物线交三轴正半轴于下点,问是否存在实数m,使得△BO下为等腰三角形?若存在,求出m4值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=a,BC=b,
b
3
≤a≤3b
,AE=AH=CF=CG,则四边形EFGH的面积的最大值是(  )
A.
1
16
(a+b)2
B.
1
8
(a+b)2
C.
1
4
(a+b)2
D.
1
2
(a+b)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m.试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
小明在解答下图所示的问题时,写下了如下解答过程:

①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴建立如图所示的平面直角坐标系;
②设抛物线的解析式为y=ax2
③则B点的坐标为(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
问:(1)小明的解答过程是否正确,若不正确,请你加以改正;
(2)喷出的水流能否浇灌到地面上距离A点3.5m的庄稼上(图上庄稼在A点的右侧,庄稼的高度不计),若不能请你在上图所示的坐标系中将喷头B上下或左右平移,问至少要平移多少距离才能浇灌到地面的庄稼,并求出此时喷出的抛物线形水流的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=-
2
3
x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

同步练习册答案