精英家教网 > 初中数学 > 题目详情

【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)

【答案】8.7

【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

试题解析:∵∠CBD=∠A+∠ACB

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°

∴∠A=∠ACB

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:这棵树CD的高度为8.7米.

考点:解直角三角形的应用

型】解答
束】
23

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐标为();(3) .

【解析】分析:(1)将点AB代入抛物线y=-x2+ax+b,解得ab可得解析式;

(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;

(3)由P点的坐标可得C点坐标,ABC的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.

详解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,

解得,a=4,b=﹣3,

∴抛物线的解析式为:y=﹣x2+4x﹣3;

(2)∵点Cy轴上,

所以C点横坐标x=0,

∵点P是线段BC的中点,

∴点P横坐标xP==

∵点P在抛物线y=﹣x2+4x﹣3上,

yP=﹣3=

∴点P的坐标为();

(3)∵点P的坐标为(),点P是线段BC的中点,

∴点C的纵坐标为﹣0=

∴点C的坐标为(0,),

BC==

sinOCB===

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观24个字是社会主义核心价值观的基本内容其中:

富强、民主、文明、和谐国家层面的价值目标

自由、平等、公正、法治社会层面的价值取向

爱国、敬业、诚信、友善公民个人层面的价值准则

小光同学将其中的文明和谐自由平等的文字分别贴在4张硬纸板上,制成如右图所示的卡片将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片

1小光第一次抽取的卡片上的文字是国家层面价值目标的概率是

2请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次

社会层面价值取向的概率卡片名称可用字母表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠COE90° OF 平分∠AOE

1)若∠BOE80°,求∠COF的度数.

2)若∠COFα(0°α90°),则∠BOE (用含α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①P为△ABC所在平面上一点,且∠APBBPCCPA120°,则点P叫作△ABC的费马点.

(1)如果点P为锐角△ABC的费马点,且∠ABC60°.

①求证: ABP∽△BCP

②若PA3PC4,求PB的长;

(2)如图②,已知锐角△ABC,分别以ABAC为边向外作正△ABE和正△ACDCEBD相交于点P,连接AP.

①求∠CPD的度数;

②求证:点P为△ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB =40°,∠AOC= BOC,则∠AOC的度数为20°;③若线段AB=3, BC=2,则线段AC的长为15;④若∠a+β=180°,且∠a<β,则∠a的余角为(β-a).其中正确结论的个数(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②两个三次多项式的和一定是三次多项式;③若xyz0,则+++的值为0或﹣4;④若ab互为相反数,则=﹣1;⑤若xy,则.其中正确的个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).

(1)这次调查中,一共抽取了多少名学生?

(2)补全频数分布直方图;

(3)估计全校所有学生中有多少人乘坐公交车上学.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的st的关系.

(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?

(2)汽车B的速度是多少?

(3)求L1,L2分别表示的两辆汽车的st的关系式.

(4)2小时后,两车相距多少千米?

(5)行驶多长时间后,A、B两车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明研究二次函数为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当时,yx的增大而增大,则m的取值范围为;④点与点在函数图象上,若,则.其中正确结论的个数为(

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案