精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.
(1)求证:AB=AC;
(2)当=时,①求tan∠ABE的值;②如果AE=,求AC的值.

【答案】分析:(1)BE切⊙O于点B,根据弦切角定理得到∠ABE=∠C,把求证AB=AC的问题转化为证明∠ABC=∠C的问题.
(2)①连接AO,交BC于点F,tan∠ABE=tan∠ABF=,转化为求AF的问题.
②在△EBA和△ECB中,∠E=∠E,∠EBA=∠ECB,得到△EBA∽△ECB,再由切割线定理,得EB2=EA×EC=EA(EA+AC),就可以求出AC的长.
解答:(1)证明:∵BE切⊙O于点B,
∴∠ABE=∠C.
∵∠EBC=2∠C,
即∠ABE+∠ABC=2∠C.
∴∠ABC=∠C.
∴AB=AC.

(2)解:①如图,连接AO,交BC于点F
∵AB=AC,∴
∴AO⊥BC,且BF=FC.

设AB=m,BF=2m,
由勾股定理,得AF==
∴tan∠ABE=tan∠ABF=
②在△EBA和△ECB中,
∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB,


∴EB=EA(※);
由切割线定理,得EB2=EA×EC=EA(EA+AC);
将(※)式代入上式,得EA2=EA(EA+AC);
∵EA≠0,
∴AC=EA=×=4.
点评:本题主要考查了相似三角形的性质,对应边的比相等,以及切割线定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案