精英家教网 > 初中数学 > 题目详情

【题目】m2-2mn+2n2-8n+16=0,求mn的值.

解:∵m2-2mn+2n2-8n+16=0,

m2-2m nn2)+( )=0,

即( 2+( 2=0.根据非负数的性质,

mn

完善上述解答过程,然后解答下面的问题:

设等腰三角形ABC的三边长abc,且满足a2b2-4a-6b+13=0,求ABC的周长

【答案】8

【解析】

先根据“添括号法则”结合“完全平方公式”将例题的解答过程补充完整,然后参考例题的解题方法,将等式a2b2-4a-6b+13=0变形为进而化为即可得到这样再结合△ABC是等腰三角形即可求出△ABC的周长了.

(1)完善例题的解题过程:

m2-2mn+2n2-8n+16=0,

m2-2m nn2)+( n2-8n+16 )=0,

即( m-n 2+( n-4 2=0

mn 4

(2)∵a2b2-4a-6b+13=0

等腰△ABC的三边长为:abc

三边分别为:2、2、3,此时能围成三角形,△ABC的周长=2+2+3=7;

三边分别为:2、3、3,此时能围成三角形,△ABC的周长=2+3+3=8;

综上所述等腰△ABC的周长为78.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A坐标为(6,0),点B在y轴的正半轴上,且=240.

(1)求点B坐标;

(2)若点P从B出发沿y轴负半轴方向运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;

(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰RtABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰RtADE,DAE=90°.连接CE.

(1)如图,求证:△ACE≌△ABD;

(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;

3)若AC=,当CD=1时,请求出DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1MAN=90°,射线AE在这个角的内部,点BC分别在∠MAN的边AMAN上,且AB=ACCFAE于点FBDAE于点D.求证:ABD≌△CAF

2)如图2,点BC分别在∠MAN的边AMAN上,点EF都在∠MAN内部的射线AD上,∠12分别是ABECAF的外角.已知AB=AC,且∠1=2=BAC.求证:ABE≌△CAF

3)如图3,在ABC中,AB=ACABBC.点D在边BC上,CD=2BD,点EF在线段AD上,∠1=2=BAC.若ABC的面积为15,求ACFBDE的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AD=BC=6,AB=CD=4.点P从点A出发,以每秒1个单位的速度沿A→B→C→D→A的方向运动,回到点A停止运动设运动时间为t

(1)当t= 时,点P到达点C;当t= 时,点P回到点A;

(2)ABP面积取最大值时t的取值范围;(3)当ABP的面积为3时,求t的值;

(4)若点P出发时,点Q从点A出发,以每秒2个单位的速度沿A→D→C→B→A的方向运动,回到点A停止运动.请问:P 、Q何时在长方形ABCD的边上相距1个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE

求证:1∠CEB=∠CBE

2)四边形BCED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司仓库本周内货物进出的吨数记录如下”表示进库,“”表示出库

日期

星期日

星期一

星期二

星期三

星期四

星期五

星期六

吨数

这一周,仓库内货物的总吨数是______填“增多”或“减少”

若周六结束时仓库内还有货物360吨,则周日开始时仓库内有货物多少吨?

如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元的装卸费?

查看答案和解析>>

同步练习册答案