分析 首先过点P作EF∥AB,作MN∥BC,把矩形ABCD分成四个小矩形,然后分别表示出PA、PB、PC、PD的平方,根据平方关系即可得解.
解答 证明:过点P作EF∥AB,作MN∥BC,
则四边形AMPE,四边形BFPM,四边形FCNP,四边形NDEP都是矩形,
根据勾股定理得,PA2=AE2+PE2,
PB2=BF2+PF2,
PC2=FC2+PF2,
PD2=DE2+PE2,
∵AE=BF,DE=FC,
∴(AE2+PE2)+(FC2+PF2)=(BF2+PF2)+(DE2+PE2),
即PA2+PC2=PB2+PD2.
点评 此题考查了矩形的性质与判定以及勾股定理的应用.注意准确作出辅助线是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com