精英家教网 > 初中数学 > 题目详情
在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(-4,5),(-1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;
(3)求△ABC的面积.
分析:(1)根据A点坐标,将坐标轴在A点平移到原点即可;
(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;
(3)利用矩形面积减去周围三角形面积得出即可.
解答:解:(1)∵点A的坐标为(-4,5),
∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;

(2)如图所示:△A′B′C′即为所求;

(3)△ABC的面积为:3×4-
1
2
×3×2-
1
2
×1×2-
1
2
×2×4=4.
点评:此题主要考查了平移变换以及三角形面积求法和坐标轴确定方法,正确平移顶点是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•本溪二模)在1×2的正方形网格格点上放三枚棋子,按如图所示位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

一个几何体的三视图均为矩形;其主视图和俯视图在正方形方格网中是如图所示2×3和3×3的格点矩形;请在方格中画出它的左视图,并求该几何体的全面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,A、B、C、D均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)若把直线y=kx+b中的k叫做直线的斜率,那么直线AB和直线AD的斜率有什么关系?直线AB和直线CD的斜率有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在平面直角坐标系中,A、B、C、D均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)若把直线y=kx+b中的k叫做直线的斜率,那么直线AB和直线AD的斜率有什么关系?直线AB和直线CD的斜率有什么关系?

查看答案和解析>>

科目:初中数学 来源:2012年安徽省中考数学模拟试卷(十一)(解析版) 题型:解答题

一个几何体的三视图均为矩形;其主视图和俯视图在正方形方格网中是如图所示2×3和3×3的格点矩形;请在方格中画出它的左视图,并求该几何体的全面积.

查看答案和解析>>

同步练习册答案