已知: 关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2−bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.
1.(1)若方程①的根为正整数,求整数k的值;
2.(2)求代数式的值;
3.(3)求证: 关于x的一元二次方程ax2−bx+c=0 ②必有两个不相等的实数根.
1.解:(1)解:由 kx=x+2,得(k-1) x=2.
依题意 k-1≠0.∴ . ……………………………………1分
∵ 方程的根为正整数,k为整数, ∴ k-1=1或k-1=2.
∴ k1= 2, k2=3. …………………………………………………2分
2.(2)解:依题意,二次函数y=ax2-bx+kc的图象经过点(1,0),
∴ 0 =a-b+kc, kc = b-a .
∴ = …3分
3.(3)证明:方程②的判别式为 Δ=(-b)2-4ac= b2-4ac. 由a≠0, c≠0, 得ac≠0.
证法一:
( i )若ac<0, 则-4ac>0. 故Δ=b2-4ac>0. 此时方程②有两个不相等的实数根.……4分
( ii )若ac>0, 由(2)知a-b+kc =0, 故 b=a+kc.
Δ=b2-4ac= (a+kc)2-4ac=a2+2kac+(kc)2-4ac = a2-2kac+(kc)2+4kac-4ac
=(a-kc)2+4ac(k-1). …………………………………………………5分
∵ 方程kx=x+2的根为正实数, ∴ 方程(k-1) x=2的根为正实数.
由 x>0, 2>0, 得 k-1>0. …………………………………6分
∴ 4ac(k-1)>0. ∵ (a-kc)2³0,
∴Δ=(a-kc)2+4ac(k-1)>0. 此时方程②有两个不相等的实数根. …………7分
证法二:
( i )若ac<0, 则-4ac>0. 故Δ=b2-4ac>0. 此时方程②有两个不相等的实数根. ……4分
( ii )若ac>0,∵ 抛物线y=ax2-bx+kc与x轴有交点,
∴ Δ1=(-b)2-4akc =b2-4akc³0.
(b2-4ac)-( b2-4akc)=4ac(k-1). 由证法一知 k-1>0,
∴ b2-4ac> b2-4akc³0.
∴ Δ= b2-4ac>0. 此时方程②有两个不相等的实数根. …………………7分
综上, 方程②有两个不相等的实数根.
证法三:由已知,,∴
可以证明和不能同时为0(否则),而,因此.
【解析】略
科目:初中数学 来源: 题型:
b | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
m-4 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com