精英家教网 > 初中数学 > 题目详情
如图1,已知点A(0,4
3
)
,点B在x轴正半轴上,且∠ABO=30°,动点P在线段AB上从点A向点B以每秒
3
个单位的速度运动,设运动时间为t秒,在x轴上取两点M、N作等边△PMN.
精英家教网
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当顶点M运动到与原点O重合时t的值;
(3)如图2,如果取OB的中点D,以OD为边在Rt△AOB内部作矩形ODCE,点C在线段AB上,从点P开始运动到点M与原点O重合这一过程中,设等边△PMN和矩形ODCE重叠部分的面积为S,请求出S与t的函数关系式和相应的自变量t的取值范围.
分析:(1)已知点A的坐标知道OA的长度,在直角三角形中根据30°所对的直角边等于斜边的一半求出AB,根据勾股定理求出OB,从而求出B的坐标,最后利用待定系数法求出直线AB的解析式.
(2)由(1)已经求出AB的长,可以表示出BP的长,题目也告诉了∠ABO的度数,利用三角函数值就可以表示出MP长度,当M到达O点利用30°的直角三角形的特殊关系求出OP,利用勾股定理就可以求出AP,从而求出时间t.
(3)当点M与原点O重合时,点N与点D也是重合的,这时以PM是否过点E为分点分别计算重合部分的面积.将重合部分的面积用含t的式子表示出来就可以了.
解答:解:(1)∵A(0,4
3

∴OA=4
3

在Rt△AOB中,∠AOB=90°
tan∠ABO=
AO
BO

即tan30°=
4
3
BO
=
3
3

∴BO=12
∴B(12,0)
设直线AB的解析式为:y=kx+b,由题意得:
4
3
=b
0=12k+b

解得:
k=-
3
3
b=4
3

∴直线AB的解析式为:y=-
3
3
x+4
3


(2)∵△PMN为等边三角形
∴∠PMO=60°
∵∠ABO=30°
∴∠PMO+∠ABO=90°
∴∠MPB=90°
在Rt△AOB中,∠AOB=90°,∠ABO=30°
∴AB=2AO=8
3

∴BP=AB-AP=8
3
-
3
t,在Rt△MPB中,∠MPB=90°
tan∠ABO=
MP
BP

即tan30°=
MP
8
3
-
3
t
=
3
3

∴MP=8-t
当M与O重合时,在Rt△PBO中,∠ABO=30°,∠BPO=90°
∴MP=
1
2
OB=6,即8-t=6
∴t=2

(3)M与O点重合时PM=MN=6,此时N点与D点重合,如图2,精英家教网
当PM过点E时,∠PMB=60°,∠MBA=30°,∴∠MBA=∠ACE=30°精英家教网
∴∠EAP=60°,
∴∠AEP=30°
∴AP=
1
2
AE=
3
,此时t=1
当0≤t≤1时,设PN交EC于F,过F作FG⊥OB于G,FG=OE=2
3

∵∠PNM=60°,∴GN=2
∵PM=8-t,∴BM=2PM=16-2t
∴MO=BM-BO=4-2t
ON=MN-MO=t+4
EF=OG=ON-GN=t+2
∴S=
1
2
×2
3
×(t+2+t+4)

=2
3
t+6
3

当0<t≤2时设PM、PN交EC于H、F,S=S梯形EONF-S△EHI
由(2)知MO=4-2t,IO=
3
MO=4
3
-2
3
t
∴EI=EO-IO=2
3
t-2
3

EH=
3
3
EI=2t-2
∴S△EHI=
1
2
×(2t-2)(2
3
t-2
3
)

=
3
t2-4
3
t+2
3

∴S=2
3
t+6
3
-2 
3
t2 +4
3t
-2
3

=-2
3
t2 +6
3
t+4
3
点评:本题是一道一次函数的综合试题,考查了运用待定系数法求函数的解析式,勾股定理的运用,三角函数的运用以及图形的面积公式,数学中的动点问题.是一道难度较大的综合试题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,过已知点A作直线a的平行线和垂线,并量出点A到直线a的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盐城模拟)如图1,已知点A(a,0),B(0,b),且a、b满足
a+1
+(a+b+3)2=0
,?ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=
k
x
经过C、D两点.
(1)求k的值;
(2)点P在双曲线y=
k
x
上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;
(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,
MN
HT
的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC向绕点C逆时针旋转90°,得到△A'B'C',请你画出△A'B'C'(不要求写画法).
(2)如图2,已知点O和△ABC,试画出与△ABC关于点O成中心对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知点D为等腰直角△ABC内一点,∠ACB=90°,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)请在图1中,找出与AD相等的线段,并说明理由;
(2)求∠DCA的大小;
(3)若点M在DE上,如图2,且DC=DM,求证:ME=BD.

查看答案和解析>>

同步练习册答案